ÌâÄ¿ÄÚÈÝ
7£®£¨1£©°Ñ¡÷ABCÏòÏÂÆ½ÒÆ8¸öµ¥Î»ºóµÃµ½¶ÔÓ¦µÄ¡÷A1B1C1£¬»³ö¡÷A1B1C1£»
£¨2£©»³öÓë¡÷A1B1C1¹ØÓÚyÖá¶Ô³ÆµÄ¡÷A2B2C2£»
£¨3£©ÈôµãP£¨a£¬b£©ÊÇ¡÷ABC±ßÉÏÈÎÒâÒ»µã£¬P2ÊÇ¡÷A2B2C2±ßÉÏÓëP¶ÔÓ¦µÄµã£¬Ð´³öP2µÄ×ø±êΪ£¨-a£¬b-8£©£»
£¨4£©ÊÔÔÚyÖáÉÏÕÒÒ»µãQ£¬Ê¹µÃµãQµ½B2¡¢C2Á½µãµÄ¾àÀëÖ®ºÍ×îС£¬´Ëʱ£¬QB2+QC2µÄ×îСֵΪ3$\sqrt{2}$£®
·ÖÎö £¨1£©·Ö±ð½«µãA¡¢B¡¢CÏòÏÂÆ½ÒÆ8¸öµ¥Î»£¬È»ºó˳´ÎÁ¬½Ó£»
£¨2£©·Ö±ð×÷³öµãA1¡¢B1¡¢C1¹ØÓÚyÖá¶Ô³ÆµÄµã£¬È»ºó˳´ÎÁ¬½Ó£»
£¨3£©¸ù¾ÝËù×÷ͼÐÎд³öP2µÄ×ø±ê£»
£¨4£©×÷³öµãB2¹ØÓÚyÖáµÄ¶Ô³ÆµãB1£¬Á¬½ÓB1C2£¬ÓëyÖáµÄ½»µã¼´ÎªµãQ£¬È»ºóÇó³ö×îСֵ£®
½â´ð
½â£º£¨1£©Ëù×÷ͼÐÎÈçͼËùʾ£º
£¨2£©Ëù×÷ͼÐÎÈçͼËùʾ£º
£¨3£©P2µÄ×ø±êΪ£¨-a£¬b-8£©£»
£¨4£©µãQÈçͼËùʾ£º
QB2+QC2=$\sqrt{{3}^{2}+{3}^{2}}$=3$\sqrt{2}$£®
¹Ê´ð°¸Îª£º£¨-a£¬b-8£©£»3$\sqrt{2}$£®
µãÆÀ ±¾Ì⿼²éÁ˸ù¾ÝÖá¶Ô³Æ±ä»»ºÍÆ½ÒÆ±ä»»×÷ͼ£¬½â´ð±¾ÌâµÄ¹Ø¼üÊǸù¾ÝÍø¸ñ½á¹¹×÷³ö¶ÔÓ¦µãµÄλÖã¬È»ºó˳´ÎÁ¬½Ó£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
18£®ÒÑÖªa+$\frac{1}{a}$=$\sqrt{5}$£¬Ôòa-$\frac{1}{a}$=£¨¡¡¡¡£©
| A£® | 1 | B£® | -1 | C£® | ¡À1 | D£® | -$\sqrt{5}$ |
19£®
Èçͼ£¬ÔÚÁâÐÎABCDÖУ¬EF¡ÍACÓÚµãG£¬·Ö±ð½»AD¼°CBµÄÑÓ³¤ÏßÓÚµãE¡¢F½»ABÓÚµãH£¬AH£ºFB=1£º2£¬ÔòAG£ºGCµÄֵΪ£¨¡¡¡¡£©
| A£® | $\frac{1}{3}$ | B£® | $\frac{1}{5}$ | C£® | $\frac{2}{5}$ | D£® | $\frac{1}{4}$ |