题目内容

6.如图,△ABC中,AB=AC,∠A=36°,∠ABC和∠ACB的平分线BE和CD相交于点O,则图中等腰三角形的个数是(  )
A.4B.6C.7D.8

分析 由在△ABC中,AB=AC,∠A=36°,根据等边对等角,即可求得∠ABC与∠ACB的度数,又由BD、CE分别为∠ABC与∠ACB的角平分线,即可求得∠ABD=∠CBD=∠ACE=∠BCE=∠A=36°,然后利用三角形内角和定理与三角形外角的性质,即可求得∠BEO=∠BOE=∠ABC=∠ACB=∠CDO=∠COD=72°,由等角对等边,即可求得答案.

解答 解:∵在△ABC中,AB=AC,∠A=36°,
∴∠ABC=∠ACB=$\frac{180°-36°}{2}$=72°,
∵BD、CE分别为∠ABC与∠ACB的角平分线,
∴∠ABD=∠CBD=∠ACE=∠BCE=∠A=36°,
∴AE=CE,AD=BD,BO=CO,
∴△ABC,△ABD,△ACE,△BOC是等腰三角形,
∵∠BEC=180°-∠ABC-∠BCE=72°,∠CDB=180°-∠BCD-∠CBD=72°,∠EOB=∠DOC=∠CBD+∠BCE=72°,
∴∠BEO=∠BOE=∠ABC=∠ACB=∠CDO=∠COD=72°,
∴BE=BO,CO=CD,BC=BD=CO,
∴△BEO,△CDO,△BCD,△CBE是等腰三角形.
∴图中的等腰三角形有8个.
故选D.

点评 本题考查了等腰三角新的判定与性质、三角形内角和定理以及三角外角的性质.此题难度不大,解题的关键是求得各角的度数,掌握等角对等边与等边对等角定理的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网