题目内容

2.在平面直角坐标系中,已知点A(-3,2),B(-1,0),C(-2,-1).
(1)请在图中画出△ABC,并画出△ABC关于y轴对称的图形.
(2)判定△ABC的形状,并说明理由.

分析 (1)补充成网格结构,找出点A、B、C的位置,再找出点A、B、C关于y轴的对称点A′、B′、C′的位置,然后顺次连接即可;
(2)利用勾股定理列式求出AB、BC、AC,再利用勾股定理逆定理判断出三角形是直角三角形.

解答 解:(1)如图所示;
(2)由勾股定理得,AB=$\sqrt{{2}^{2}+{2}^{2}}$=2$\sqrt{2}$,
BC=$\sqrt{{1}^{2}+{1}^{2}}$=$\sqrt{2}$,
AC=$\sqrt{{1}^{2}+{3}^{2}}$=$\sqrt{10}$,
∵AB2+BC2=(2$\sqrt{2}$)2+($\sqrt{2}$)2=10,
AC2=($\sqrt{10}$)2=10,
∴AB2+BC2=AC2
∴△ABC是直角三角形.

点评 本题考查了利用轴对称变换作图,勾股定理和勾股定理逆定理,补充成网格结构并准确确定出对应点的位置是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网