题目内容
17.分析 取AB的中点E,连接OE、DE、OD,根据三角形的任意两边之和大于第三边可知当O、D、E三点共线时,点D到点O的距离最大,再根据勾股定理求出DE的长,根据直角三角形斜边上的中线等于斜边的一半求出OE的长,两者相加即可得解.
解答
解:如图,取AB的中点E,连接OE、DE、OD,
∵OD≤OE+DE,
∴当O、D、E三点共线时,点D到点O的距离最大,
此时,∵AB=8,BC=3,
∴OE=AE=$\frac{1}{2}$AB=4,
∴DE=$\sqrt{A{D}^{2}+A{E}^{2}}$=$\sqrt{{3}^{2}+{4}^{2}}$=5,
∴OD的最大值为:5+4=9;
故答案为:9.
点评 本题考查了直角三角形斜边上的中线等于斜边的一半得到性质,三角形的三边关系,矩形的性质,勾股定理,根据三角形的三边关系判断出点O、E、D三点共线时,点D到点O的距离最大是解题的关键.
练习册系列答案
相关题目
12.
如图所示,S△ABO=2,则反比例函数的解析式是( )
| A. | $y=-\frac{2}{x}$ | B. | $y=\frac{2}{x}$ | C. | $y=-\frac{4}{x}$ | D. | $y=\frac{4}{x}$ |
9.下列每组数据中的三个数值分别为三角形的三边长,不能构成直角三角形是( )
| A. | 4,6,8 | B. | 9,40,41 | C. | 5,12,13 | D. | 7,24,25 |