题目内容

5.如图,沿矩形ABCD的对角线折叠,先折出折痕AC,再折叠AB,使AB落在对角线AC上,折痕AE,若AD=8,AB=6.则BE=3.

分析 如答图所示AB沿AE折叠后点B的对应点为F.利用勾股定理列式求出AC,设BE=x,表示出CE,根据翻折的性质可得BE=EF,AF=AB,再求出CF,然后利用勾股定理列方程求出x即可.

解答 解:如图所示:AB沿AE折叠后点B的对应点为F.

由勾股定理得,AC=$\sqrt{A{B}^{2}+B{C}^{2}}$=$\sqrt{{6}^{2}+{8}^{2}}$=10.
设BE=x,则CE=8-x.
由翻折的性质得:BE=EF=x,AF=AB=6,
所以CF=10-6=4.
在Rt△CEF中,由勾股定理得,EF2+CF2=CE2,即x2+42=(8-x)2
解得x=3,即BE=3.
故答案为:3.

点评 本题考查了翻折变换的性质,勾股定理,此类题目,熟记性质并利用勾股定理列出方程是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网