题目内容
下列函数,一定是二次函数的是( )
A.y=x2-
B.y=ax2+bx+c
C.y=(x-3)2-x2
D.y=(m2+1)x2(m为常数)
如图,⊙O中,弦AB、CD相交于AB的中点E,连接AD并延长至点F,使DF=AD,连接BC、BF.
(1)求证:△CBE∽△AFB;
(2)当时,求的值.
已知菱形的两条对角线的长分别是6和8,那么它的边长是 .
从-3,-2,-1,0,1,2这六个数中,任意抽取一个数,作为反比例函数和二次函数y=(m+1)x2+mx+1中的m的值,恰好使所得的反比例函数在每个象限内,y随x的增大而增大,且二次函数的图象开口向上的概率为 .
2013年“中国好声音”全国巡演重庆站在奥体中心举行.童童从家出发前往观看,先匀速步行至轻轨车站,等了一会儿,童童搭乘轻轨至奥体中心观看演出,演出结束后,童童搭乘邻居刘叔叔的车顺利回到家.其中x表示童童从家出发后所用时间,y表示童童离家的距离.下面能反映y与x的函数关系的大致图象是( )
如图,抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣4,0)两点,
(1)求该抛物线的解析式;
(2)设(1)中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得?QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;
(3)设此抛物线与直线y=﹣x在第二象限交于点D,平行于y轴的直线x=m(-1-<m<0)与抛物线交于点M,与直线y=﹣x交于点N,连接BM、CM、NC、NB,是否存在m的值,使四边形BNCM的面积S最大?若存在,请求出m的值,若不存在,请说明理由.
已知一个口袋中装有4个只有颜色不同的球,其中3个白球,1个黑球.
(1)求从中随机抽取出一个黑球的概率是多少;
(2)若从口袋中摸出一个球,记下颜色后不放回,再摸出一个球。请列表或作出树状图,求两次都摸出白球的概率?
如图1是矩形纸片ABCD连续两次对折展开平铺后的图形,折痕分别为EF,MN,GH.
(1)如图2,连接BD,与折痕GH,EF,MN分别交于点S,O,T,求证:OE=OF;
(2)如图3,连接ET并延长CD交于点Q,连接FS并延长AB交于点P,连接EP,FQ.求证:四边形EPFQ是菱形;
(3)若四边形EPFQ是正方形,则矩形ABCD需满足的条件是______.
已知点A(1,y1)、B(,y2)、C(,y3)在函数上,则y1、y2、y3的大小关系是( )
A.y1>y2>y3 B.y2>y1>y3
C.y3>y1>y2 D.y1>y3>y2