题目内容


某过天桥的设计图是梯形ABCD(如图所示),桥面DC与地面AB平行,DC=62米,AB=88米.左斜面AD与地面AB的夹角为23°,右斜面BC与地面AB的夹角为30°,立柱DE⊥AB于E,立柱CF⊥AB于F,求桥面DC与地面AB之间的距离(精确到0.1米)sin23°=0.3907,cos23°=0.9205,tan23°=0.4245

 


【考点】解直角三角形的应用-坡度坡角问题.菁优网版权所有

【分析】首先设桥面DC与地面AB之间的距离为x米,分别用x表示出AE和BF,AE+BF=AB﹣DC,则得到关于x的一元一次方程,从而求出x.

【解答】解:设桥面DC与地面AB之间的距离为x米,即DE=CF=xm,

则AE=,BF=

AE+BF=AB﹣DC,

+=88﹣62,

解得:x≈6.4.

答:桥面DC与地面AB之间的距离约为6.4米.

【点评】此题考查的是解直角三角形的应用﹣坡度坡角问题.关键是由两个直角三角形得出关于桥面DC与地面AB之间的距离的方程求解.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网