题目内容
小明同时向上掷两枚质地均匀、同样大小的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数之和是3的倍数的概率是( )
A.![]()
B.![]()
C.![]()
D.![]()
![]()
A【考点】列表法与树状图法.
【分析】列举出所有情况,看掷得面朝上的点数之和是3的倍数的情况占总情况的多少即可.
【解答】解:
![]()
![]()
显然和为3的倍数的概率为![]()
.
故选A.
【点评】此题可以采用列表法或者采用树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.树状图法适用于两步或两步以上完成的事件.解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
练习册系列答案
相关题目
设边长为2a的正方形的中心A在直线l上,它的一组对边垂直于直线l,半径为r的⊙O的圆心O在直线l上运动,点A、O间距离为d.
![]()
![]()
(1)如图①,当r<a时,根据d与a、r之间关系,将⊙O与正方形的公共点个数填入下表:
| d、a、r之间关系 | 公共点的个数 |
| d>a+r | |
| d=a+r | |
| a﹣r<d<a+r | |
| d=a﹣r | |
| d<a﹣r |
所以,当r<a时,⊙O与正方形的公共点的个数可能有 个;
(2)如图②,当r=a时,根据d与a、r之间关系,将⊙O与正方形的公共点个数填入下表:
| d、a、r之间关系 | 公共点的个数 |
| d>a+r | |
| d=a+r | |
| a≤d<a+r | |
| d<a |
所以,当r=a时,⊙O与正方形的公共点个数可能有 个;
(3)如图③,当⊙O与正方形有5个公共点时,试说明r=![]()
a.