题目内容
设a是方程x2﹣2006x+1=0的一个根,求代数式a2﹣2007a+
的值.
【答案】-1
【解析】【试题分析】根据方程的根的定义,则x=a代入方程,可得:a2-2006a+1=0,
所以a2-2006a=-1,a2+1=2006a,得a2﹣2007a+
=
.
【试题解析】
把x=a代入方程,可得:a2-2006a+1=0,
所以a2-2006a=-1,a2+1=2006a,
所以a2-2007a=-a-1,
所以a2-2007a+
=-a-1+
=-1,即a2-2007a+
=-1.
【方法点睛】本题目是一道考查一元二次方程的根的定义,方程的根满足该方程,代入得到相关代数式的值,进而将所求的额代数式进行转化,化简,求值.题目难度一般.
【题型】解答题
【结束】
5
如图,Rt△ABC中,∠BAC=60°,点O为Rt△ABC斜边AB上的一点,以OA为半径的⊙O与BC切于点D,与AC交于点E,连接AD.
(1)求∠CAD的度数;
(2)若OA = 2,求阴影部分的面积(结果保留π).
![]()
练习册系列答案
相关题目