题目内容

19.在平行四边形ABCD中,点E、F分别在AB、CD上,且AE=CF.
(1)求证:△ADE≌△CBF;
(2)若EF=DB,求证:四边形DEBF为矩形.

分析 (1)由在?ABCD中,AE=CF,可利用SAS判定△ADE≌△CBF.
(2)由在?ABCD中,且AE=CF,利用一组对边平行且相等的四边形是平行四边形,可证得四边形DEBF是平行四边形,又由EF=DB,可证得四边形DEBF是矩形.

解答 证明:(1)∵四边形ABCD是平行四边形,
∴AD=CB,∠A=∠C,
在△ADE和△CBF中,
$\left\{\begin{array}{l}{AD=CB}\\{∠A=∠C}\\{AE=CF}\end{array}\right.$,
∴△ADE≌△CBF(SAS).

(2)∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∵AE=CF,
∴BE=DF,
∴四边形DEBF是平行四边形,
∵EF=DB,
∴四边形DEBF是矩形.

点评 此题考查了平行四边形的判定与性质、矩形的判定以及全等三角形的判定与性质.注意有对角线相等的平行四边形是矩形,首先证得四边形DEBF是平行四边形是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网