题目内容

17.如图,CD∥AB,BD平分∠ABC,CE平分∠DCF,∠ACE=90°
(1)请问BD和CE是否平行?请你说明理由;
(2)AC和BD有何位置关系?请你说明判断的理由.

分析 (1)根据平行线性质得出∠ABC=∠DCF,根据角平分线定义求出∠2=∠4,根据平行线的判定推出即可;
(2)根据平行线性质得出∠DGC+∠ACE=180°,根据∠ACE=90°,求出∠DGC=90°,根据垂直定义推出即可.

解答 解:(1)BD∥CE.
理由:∵AB∥CD,
∴∠ABC=∠DCF,
∴BD平分∠ABC,CE平分∠DCF,
∴∠2=$\frac{1}{2}$∠ABC,∠4=$\frac{1}{2}$∠DCF,
∴∠2=∠4,
∴BD∥CE(同位角相等,两直线平行);

(2)AC⊥BD,
理由:∵BD∥CE,
∴∠DGC+∠ACE=180°,
∴∠ACE=90°,
∴∠DGC=180°-90°=90°,
即AC⊥BD.

点评 本题考查了角平分线定义,平行线的性质和判定,垂直定义等知识点,解题时注意:①同位角相等,两直线平行;②两直线平行,同旁内角互补.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网