题目内容
如图,AB∥CD,P为定点,E、F分别是AB、CD上的动点.
(1)求证:∠P=∠BEP+∠PFD;
(2)如图2,若M为CD上一点,∠FMN=∠BEP,且MN交PF于N.试说明∠EPF与∠PNM的关系,并证明你的结论;
(3)移动E、F使得∠EPF=90°,如图3,作∠PEG=∠BEP,求
的值.

(1)求证:∠P=∠BEP+∠PFD;
(2)如图2,若M为CD上一点,∠FMN=∠BEP,且MN交PF于N.试说明∠EPF与∠PNM的关系,并证明你的结论;
(3)移动E、F使得∠EPF=90°,如图3,作∠PEG=∠BEP,求
| ∠AEG |
| ∠PFD |
考点:平行线的性质
专题:几何图形问题,证明题
分析:(1)过P作PQ平行于AB,由AB与CD平行,得到PQ与CD平行,利用两直线平行内错角相等得到两对角相等,再由∠EPF=∠1+∠2,等量代换就可得证;
(2)由(1)中的结论∠EPF=∠BEP+∠PFD,根据∠FMN=∠BEP,等量代换再利用外角性质即可得证;
(3)由(1)中的结论∠EPF=∠BEP+∠PFD,设设∠PFD=x,则∠BEP=90°-x,根据∠PEG=∠BEP=90°-x,利用平角定义表示出∠AEG,即可求出所求比值.
(2)由(1)中的结论∠EPF=∠BEP+∠PFD,根据∠FMN=∠BEP,等量代换再利用外角性质即可得证;
(3)由(1)中的结论∠EPF=∠BEP+∠PFD,设设∠PFD=x,则∠BEP=90°-x,根据∠PEG=∠BEP=90°-x,利用平角定义表示出∠AEG,即可求出所求比值.
解答:
解:(1)过P作PQ∥AB,
∵AB∥CD,
∴PQ∥CD,
∴∠BEP=∠1,∠2=∠PFD,
∵∠EPF=∠1+∠2,
∴∠EPF=∠BEP+∠PFD;
(2)由(1)的结论∠EPF=∠BEP+∠PFD,
∵∠FMN=∠BEP,
∴∠EPF=∠FMN+∠PFD,
∵∠PNM为△MNF的外角,
∴∠PMN=∠FMN+∠PFD,
则∠EPF=∠PMN;
(3)由(1)的结论∠EPF=∠BEP+∠PFD=90°,
设∠PFD=x,则∠BEP=90°-x,
∵∠PEG=∠BEP=90°-x,
∴∠AEG=180°-2(90°-x)=2x,
则
=
=2.
∵AB∥CD,
∴PQ∥CD,
∴∠BEP=∠1,∠2=∠PFD,
∵∠EPF=∠1+∠2,
∴∠EPF=∠BEP+∠PFD;
(2)由(1)的结论∠EPF=∠BEP+∠PFD,
∵∠FMN=∠BEP,
∴∠EPF=∠FMN+∠PFD,
∵∠PNM为△MNF的外角,
∴∠PMN=∠FMN+∠PFD,
则∠EPF=∠PMN;
(3)由(1)的结论∠EPF=∠BEP+∠PFD=90°,
设∠PFD=x,则∠BEP=90°-x,
∵∠PEG=∠BEP=90°-x,
∴∠AEG=180°-2(90°-x)=2x,
则
| ∠AEG |
| ∠PFD |
| 2x |
| x |
点评:此题考查了平行线的性质,三角形外角性质,以及平角定义,熟练掌握平行线的性质是解本题的关键.
练习册系列答案
相关题目
如下图,∠1=∠2,则直线AB∥CD的是( )
| A、 |
| B、 |
| C、 |
| D、 |
| A、∠1和∠3是同位角 |
| B、∠2和∠3是内错角 |
| C、∠2和∠4是同旁内角 |
| D、∠1和∠4是内错角 |