题目内容

16.如图,港口A在观测站O的正东方向相距4km,某船从A出发,沿北偏东15°方向航行5分钟后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,求该船航行的速度(精确到整数位).参考数值:$\sqrt{2}$≈1.414,$\sqrt{3}$≈1.732.

分析 过点A作AD⊥OB于D.先解Rt△AOD,得出AD的长度,再由△ABD是等腰直角三角形,得出BD=AD=2km,则易得AB、AD的长度;最后结合速度=路程÷时间解答问题.

解答 解:如图,过点A作AD⊥OB于D.
在Rt△AOD中,∵∠ADO=90°,∠AOD=30°,OA=4km,
∴AD=$\frac{1}{2}$OA=2km.
在Rt△ABD中,∵∠ADB=90°,∠B=∠CAB-∠AOB=75°-30°=45°,
∴BD=AD=2km,
∴AB=$\sqrt{2}$AD=2$\sqrt{2}$km.
即该船航行的距离(即AB的长)为2$\sqrt{2}$km.
∴2$\sqrt{2}$÷$\frac{1}{12}$=24×1.414÷5≈34(km/h).
答:该船航行的速度约为34km/h.

点评 本题考查了解直角三角形的应用-方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网