题目内容

1.已知:点D是等腰直角三角形ABC斜边BC上一点(不与点B重合),连接AD,将线段AD绕点A逆时针方向旋转90°得到线段AE,连接CE.
求证:BD=CE,BD⊥CE.

分析 根据等腰直角三角形的性质可得∠ABC=∠ACB=45°,再根据旋转性质可得AD=AE,∠DAE=90°,然后利用同角的余角相等求出∠BAD=∠CAE,然后利用“边角边”证明△BAD和△CEF全等,从而得证.

解答 证明:∵∠BAC=90°,AB=AC,
∴∠ABC=∠ACB=45°,
∵∠DAE=90°,
∴∠DAE=∠CAE+∠DAC=90°,
∵∠BAC=∠BAD+∠DAC=90°,
∴∠BAD=∠CAE,
在△BAD和△CAE中,
$\left\{\begin{array}{l}{AB=AC}\\{∠BAD=∠CAE}\\{AD=AE}\end{array}\right.$,
∴△BAD≌△CAE(SAS),
∴BD=CE,∠ACE=∠ABC=45°.
∴∠BCE=∠ACB+∠ACE=90°,
∴BD⊥CE.

点评 本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形的性质.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网