题目内容

在□ABCD中,对角线AC,BD相交于点O,AB=8cm,BC=6cm.△AOB的周长是18cm,则△AOD的周长是__________.

16cm 【解析】试题解析: 如图所示: ∵四边形ABCD是平行四边形, 的周长是18cm,AB=8cm, 的周长 故答案为:16cm.
练习册系列答案
相关题目

一列火车从车站开出,预计行程为450千米,当它出发3小时后,因特殊情况而多 停一站,因此耽误30分钟,后来把速度提高了20%,结果准时到达目的地,求这列火车原来的速度.

75千米/时. 【解析】试题分析:设这列火车原来的速度为每小时x千米,则提速后速度为每小时(1+20%)x千米,根据题意可得等量关系:按原速度行驶(450-x)千米所用时间=提速后行驶(450-x)千米所用时间+,列出方程,求解即可. 试题解析:设这列火车原来的速度为x千米/时,根据题意, 得+, 解得x=75, 经检验x=75是原方程的解, 所以,这列火车原来...

如图,一艘海轮位于灯塔P的北偏东53°方向,距离灯塔100海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处.

(1)在图中画出点B,并求出B处与灯塔P的距离(结果取整数);

(2)用方向和距离描述灯塔P相对于B处的位置.

(参考数据:sin 53°≈0.80,cos 53°≈0.60,tan53°≈1.33, ≈1.41)

(1)点B的位置见解析,PB≈113海里; (2)灯塔P位于B处的西北(或北偏西45°)方向,距离B处大约113海里. 【解析】试题分析:(1)先在图中画出点B,作PC⊥AB于C,先解Rt△PAC,得出PC=PA•sin∠PAC=80,再解Rt△PBC,得出PB=PC=1.41×80≈113; (2)由∠CBP=45°,PB≈113海里,即可得到灯塔P位于B处北偏西45°方向,且...

如图,在□ABCD中,AC交BD于点O,点E、点F分别是OA、OC的中点,请判断线段BE、DF的关系,并证明你的结论

【解析】根据平行四边形的性质对角线互相平分得出OA=OC,OB=OD,利用中点的意义得出OE=OF,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定BFDE是平行四边形,从而得出BE=DF,BE∥DF. 【解析】 由题意得:BE=DF,BE∥DF.理由如下: 连接DE、BF. ∵ABCD是平行四边形, ∴OA=OC,OB=OD, ∵E,F分别是...

如图等腰梯形ABCD,AE是BC边上的高.已知AE=4,CE=8,则梯形ABCD的面积是(  )

A. 16 B. 32 C. 24 D. 48

B 【解析】试题解析:过点C作CF⊥AD交AD的延长线于点F,则∠CFD=90°. ∵四边形ABCD是等腰梯形 ∴AD∥BC,AB=CD, 又∵AE是BC边上的高, ∴四边形AECF是矩形. 在和中 ≌(HL). ∴梯形ABCD的面积=矩形AECF的面积=4×8=32. 故选B.

平行四边形的对角线一定具有的性质是( )

A. 相等 B. 互相平分

C. 互相垂直 D. 互相垂直且相等

B 【解析】试题分析:根据平行四边形的对角线互相平分可得答案. 【解析】 平行四边形的对角线互相平分, 故选:B.

用下列一种正多边形可以拼地板的是(  )

A. 正五边形 B. 正六边形 C. 正八边形 D. 正十二边形

B 【解析】 试题分析:先计算各正多边形每一个内角的度数,判断是否为360°的约数. 【解析】 A、正五边形的每一个内角度数为180°﹣360°÷5=108°,108°不是360°的约数,故一种正五边形不能拼地板; B、正六边形的每一个内角度数为180°﹣360°÷6=120°,120°是360°的约数,故一种六边形能拼地板; C、正八边形的每一个内角度数为180°...

满足,则的值为( )

A. 1或0 B. 或0 C. 1或 D. 1或

D 【解析】令,则 则 即当a+b+c+d 时,则k=1,则;当a+b+c+d=0时,k=-1, . 故选D.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网