题目内容
17.分析 连接BE,由圆周角定理可知∠E=∠C,根据等腰三角形的性质可知∠ABC=∠C,所以∠E=∠ABC,再加公共角相等即可证明△ABE∽△ADB,利用相似三角形的性质即可得到AB2=AD•AE;
解答
证明:连接BE,
∴∠E=∠C,
∵AB=AC,
∴∠ABC=∠C,
∴∠E=∠ABC,
∵∠BAE=∠DAB,
∴△ABE∽△ADB,
∴AB:AD=AE:AB,
∴AB2=AD•AE.
点评 本题考查了等腰三角形的性质、相似三角形的判定和性质以及圆周角定理,题目的综合性较强,难度中等.
练习册系列答案
相关题目
9.
实数x在数轴上位置如图,则x0,x-1,x-2,x-4的大小关系为( )
| A. | x0>x-1>x-2>x-4 | B. | x-4>x-2>x-1>x0 | C. | x-2>x-4>x0>x-1 | D. | x0>x-2>x-4>x-1 |