题目内容
如果方程的两个根的平方和等于7,求k的值。
比较大小:4 7.(填“>”、“=”、“<”)
如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点,求证:
(1)△ACE≌△BCD;(2).
【答案】(1)证明见解析;(2)证明见解析.
【解析】试题分析:(1)本题要判定,已知和都是等腰直角三角形,,则,,,又因为两角有一个公共的角,所以,根据得出.
(2)由(1)的论证结果得出,,.
试题解析:
(1)∵,
∴
∴.
∵,,
(2)∵是等腰直角三角形,
∵,
∴,
由(1)知AE=DB,
考点:(1)勾股定理;(2)全等三角形的判定与性质;(3)等腰直角三角形.
【题型】解答题【结束】20
已知一次函数y=2x+4
(1)在如图所示的平面直角坐标系中,画出函数的图象;
(2)求图象与x轴的交点A的坐标,与y轴交点B的坐标;
(3)在(2)的条件下,求出△AOB的面积;
(4)利用图象直接写出:当y<0时,x的取值范围.
以下列数组作为三角形的三条边长,其中能构成直角三角形的是( )
A. 1, ,3 B. , ,5 C. 1.5,2,2.5 D. , ,
【答案】C
【解析】A、12+()2≠32,不能构成直角三角形,故选项错误;
B、(2+()2≠52,不能构成直角三角形,故选项错误;
C、1.52+22=2.52,能构成直角三角形,故选项正确;
D、())2+()2≠()2,不能构成直角三角形,故选项错误.
故选:C.
【题型】单选题【结束】3
在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到斜边AB的距离是( )
(A) (B) (C)9 (D)6
关于x的方程有两个不相等的实数根.
(1)求实数k的取值范围;
(2)设方程的两个实数根分别为、,存不存在这样的实数k,使得?若存在,求出这样的k值;若不存在,说明理由.
若方程x2﹣kx+6=0的两根分别比方程x2+kx+6=0的两根大5,则k的值是______.
小明和小华解同一个一元二次方程时,小明看错一次项系数,解得两根为2,﹣3,而小华看错常数项,解错两根为﹣2,5,那么原方程为( )
A. x2﹣3x+6=0 B. x2﹣3x﹣6=0 C. x2+3x﹣6=0 D. x2+3x+6=0
解方程:x2+10x+16=0.(因式分解法)
某地区为了进一步缓解交通拥堵问题,决定修建一条长为6千米的公路,如果平均每天的修建费y(万元)与修建天数x(天)之间在30≤x≤120范围内,具有一次函数的关系,如下表所示.
则y关于x的函数解析式为________________________.