题目内容

4.已知一个等腰三角形的两边长分别为3和6,则该等腰三角形的周长是15.

分析 分腰为3和腰为6两种情况考虑,先根据三角形的三边关系确定三角形是否存在,再根据三角形的周长公式求值即可.

解答 解:当腰为3时,3+3=6,
∴3、3、6不能组成三角形;
当腰为6时,3+6=9>6,
∴3、6、6能组成三角形,
该三角形的周长为=3+6+6=15.
故答案为:15.

点评 本题考查了等腰三角形的性质以及三角形三边关系,由三角形三边关系确定三角形的三条边长为解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网