ÌâÄ¿ÄÚÈÝ
19£®£¨1£©ÈôµãDµÄ×ø±êΪ£¨2£¬m£©£¬Ôòm=2£¬b=6£»
£¨2£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬Í¨¹ý¼ÆËãÅжÏACÓëBDµÄÊýÁ¿¹ØÏµ£»
£¨3£©ÈôÔÚÒ»´Îº¯Êýy=-2x+bÓë·´±ÈÀýº¯Êýy=$\frac{4}{x}$£¨x£¾0£©µÄͼÏóµÚÒ»ÏóÏÞʼÖÕÓÐÁ½¸ö½»µãµÄǰÌáÏ£¬²»ÂÛbΪºÎÖµ£¬£¨2£©ÖÐACÓëBDµÄÊýÁ¿¹ØÏµÊÇ·ñºã³ÉÁ¢£¿ÊÔ˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©°ÑDµã×ø±ê´úÈë·´±ÈÀýº¯Êý½âÎöʽ¿ÉÇóµÃmµÄÖµ£¬ÔÙ´úÈëÒ»´Îº¯Êý½âÎöʽÔò¿ÉÇóµÃbµÄÖµ£»
£¨2£©ÁªÁ¢Á½º¯Êý½âÎöʽ¿ÉÇóµÃC¡¢DµÄ×ø±ê£¬¹ýC¡¢D·Ö±ð×÷CG¡ÍOA£¬DH¡ÍOB£¬¿ÉÖ¤µÃ¡÷AGC¡Õ¡÷DHB£¬¿ÉÖ¤µÃAC=BD£»
£¨3£©ÁªÁ¢Á½º¯Êý½âÎöʽÏûÈ¥y¿ÉµÃµ½2x2-bx+4=0£¬ÓɸùÓëϵÊýµÄ¹ØÏµ¿ÉÇóxC+xD=$\frac{b}{2}$=OB£¬¿ÉÇóµÃCG=HB£¬Í¬£¨2£©¿ÉÖ¤µÃ¡÷AGC¡Õ¡÷DHB£¬¿ÉµÃAC=DB£®
½â´ð ½â£º
£¨1£©¡ßDµãÔÚ·´±ÈÀýº¯ÊýͼÏóÉÏ£¬
¡à2m=4£¬½âµÃm=2£¬
¡àD£¨2£¬2£©
¡ßDµãÔÚÒ»´Îº¯ÊýͼÏóÉÏ£¬
¡à2=-2¡Á2+b£¬½âµÃb=6£¬
¹Ê´ð°¸Îª£º2£»6£»
£¨2£©ÏàµÈ£®
ÁªÁ¢Á½º¯Êý½âÎöʽ¿ÉµÃ$\left\{\begin{array}{l}{y=-2x+6}\\{y=\frac{4}{x}}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{x=1}\\{y=4}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$£¬
¡àC£¨1£¬4£©£¬D£¨2£¬2£©£¬
Èçͼ£¬×÷CG¡ÍOA£¬DH¡ÍOB£¬![]()
ÔÚy=-2x+6ÖУ¬Áîx=0¿ÉµÃy=6£¬
¡àAO=6£¬
¡àAG=AO-OG=2=DH£¬
¡ßCG¡ÎOB£¬
¡à¡ÏACG=¡ÏDBH£¬
ÔÚ¡÷AGCºÍ¡÷DHBÖÐ
$\left\{\begin{array}{l}{¡ÏAGC=¡ÏDHB}\\{¡ÏACG=¡ÏDBH}\\{AG=DH}\end{array}\right.$
¡à¡÷AGC¡Õ¡÷DHB£¨AAS£©£¬
¡àAC=BD£»
£¨3£©ºã³ÉÁ¢£®ÀíÓÉÈçÏ£º
ÁªÁ¢Á½º¯Êý½âÎöʽ£¬ÏûÈ¥y¿ÉµÃ2x2-bx+4=0£¬
¡àxC+xD=CG+OH=$\frac{b}{2}$£¬
ÔÚy=-2x+bÖУ¬Áîy=0¿ÉÇóµÃx=$\frac{b}{2}$£¬
¡àOB=$\frac{b}{2}$£¬
¡àCG+OH=OB£¬
¡àCG=HB£¬
ͬ£¨2£©¿ÉµÃ¡÷AGC¡Õ¡÷DHB£¬
¡àAC=BD£®
µãÆÀ ±¾ÌâΪһ´Îº¯ÊýµÄ×ÛºÏÓ¦Óã¬Éæ¼°º¯ÊýͼÏóµÄ½»µã¡¢È«µÈÈý½ÇÐεÄÅж¨ºÍÐÔÖÊ¡¢Ò»Ôª¶þ´Î·½³Ì¸ùÓëϵÊýµÄ¹ØÏµµÈ֪ʶ£®ÔÚ£¨1£©ÖÐ×¢Ò⺯ÊýͼÏóµÄ½»µã×ø±êÂú×ãÿһ¸öº¯Êý½âÎöʽÊǽâÌâµÄ¹Ø¼ü£¬ÔÚ£¨2£©ÖÐÇóµÃAG=DH£¬Ö¤µÃ¡÷ACG¡Õ¡÷DHBÊǽâÌâµÄ¹Ø¼ü£¬ÔÚ£¨3£©ÖÐÇóµÃCG=HBÊǽâÌâµÄ¹Ø¼ü£®±¾Ì⿼²é֪ʶµã½Ï¶à£¬×ÛºÏÐÔ½ÏÇ¿£¬ÄѶÈÊÊÖУ®
| A£® | 4 | B£® | 5 | C£® | 6 | D£® | 7 |
| A£® | 1.391¡Á1010 | B£® | 13.91¡Á108 | C£® | 1.391¡Á109 | D£® | 13.91¡Á109 |
| A£® | 40¡ã | B£® | 45¡ã | C£® | 50¡ã | D£® | 60¡ã |