题目内容
(1)求证:△AED≌△CFB;
(2)若AD⊥CD,四边形ABCD是什么特殊四边形?请说明理由.
考点:全等三角形的判定与性质,矩形的判定
专题:证明题
分析:(1)根据两直线平行,内错角相等可得∠E=∠F,再利用“角角边”证明△AED和△CFB全等即可;
(2)根据全等三角形对应边相等可得AD=BC,∠DAE=∠BCF,再求出∠DAC=∠BCA,然后根据内错角相等,两直线平行可得AD∥BC,再根据一组对边平行且相等的四边形是平行四边形证明四边形ABCD是平行四边形,再根据有一个角是直角的平行四边形是矩形解答.
(2)根据全等三角形对应边相等可得AD=BC,∠DAE=∠BCF,再求出∠DAC=∠BCA,然后根据内错角相等,两直线平行可得AD∥BC,再根据一组对边平行且相等的四边形是平行四边形证明四边形ABCD是平行四边形,再根据有一个角是直角的平行四边形是矩形解答.
解答:(1)证明:∵DE∥BF,
∴∠E=∠F,
在△AED和△CFB中,
,
∴△AED≌△CFB(AAS);
(2)解:四边形ABCD是矩形.
理由如下:∵△AED≌△CFB,
∴AD=BC,∠DAE=∠BCF,
∴∠DAC=∠BCA,
∴AD∥BC,
∴四边形ABCD是平行四边形,
又∵AD⊥CD,
∴四边形ABCD是矩形.
∴∠E=∠F,
在△AED和△CFB中,
|
∴△AED≌△CFB(AAS);
(2)解:四边形ABCD是矩形.
理由如下:∵△AED≌△CFB,
∴AD=BC,∠DAE=∠BCF,
∴∠DAC=∠BCA,
∴AD∥BC,
∴四边形ABCD是平行四边形,
又∵AD⊥CD,
∴四边形ABCD是矩形.
点评:本题考查了全等三角形的判定与性质,矩形的判定,平行四边形的判定以及平行四边形与矩形的联系,熟记各图形的判定方法和性质是解题的关键.
练习册系列答案
相关题目