题目内容
18.已知多项式2x4-3x3+ax2+7x+b含有因式x2+x-2,求$\frac{a}{b}$的值.分析 由于x2+x-2=(x+2)(x-1),而多项式2x4-3x3+ax2+7x+b能被x2+x-2整除,则2x4-3x3+ax2+7x+b能被(x+2)(x-1)整除.运用待定系数法,可设商是A,则2x4-3x3+ax2+7x+b=A(x+2)(x-1),则x=-2和x=1时,2x4-3x3+ax2+7x+b=0,分别代入,得到关于a、b的二元一次方程组,解此方程组,求出a、b的值,进而得到$\frac{a}{b}$的值.
解答 解:∵x2+x-2=(x+2)(x-1),
∴2x4-3x3+ax2+7x+b能被(x+2)(x-1)整除,
设商是A.
则2x4-3x3+ax2+7x+b=A(x+2)(x-1),
则x=-2和x=1时,右边都等于0,所以左边也等于0.
当x=-2时,2x4-3x3+ax2+7x+b=32+24+4a-14+b=4a+b+42=0 ①
当x=1时,2x4-3x3+ax2+7x+b=2-3+a+7+b=a+b+6=0 ②
①-②,得
3a+36=0,
∴a=-12,
∴b=-6-a=6.
∴$\frac{a}{b}$=$\frac{-12}{6}$=-2.
点评 本题主要考查了待定系数法在因式分解中的应用,注意因式的特点,灵活解决问题.
练习册系列答案
相关题目