题目内容
考点:直角三角形斜边上的中线,直角三角形的性质
专题:
分析:求出∠ACD=67.5°,∠BCD=22.5°,根据三角形内角和定理求出∠B=67.5°,根据直角三角形斜边上中线性质求出BE=CE,推出∠BCE=∠B=67.5°,代入∠ECD=∠BCE-∠BCD求出即可.
解答:解:∵∠ACD=3∠BCD,∠ACB=90°,
∴∠ACD=67.5°,∠BCD=22.5°,
∵CD⊥AB,
∴∠CDB=90°,
∴∠B=180°-90°-22.5°=67.5°,
∵∠ACB=90°,E是斜边AB的中点,
∴BE=CE,
∴∠BCE=∠B=67.5°,
∴∠ECD=∠BCE-∠BCD=67.5°-22.5°=45°.
∴∠ACD=67.5°,∠BCD=22.5°,
∵CD⊥AB,
∴∠CDB=90°,
∴∠B=180°-90°-22.5°=67.5°,
∵∠ACB=90°,E是斜边AB的中点,
∴BE=CE,
∴∠BCE=∠B=67.5°,
∴∠ECD=∠BCE-∠BCD=67.5°-22.5°=45°.
点评:本题考查了三角形内角和定理,直角三角形斜边上中线性质,等腰三角形的性质,直角三角形的性质的应用,解此题的关键是求出∠BCE和∠BCD的度数,注意:直角三角形斜边上的中线等于斜边的一半.
练习册系列答案
相关题目