题目内容

11.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0:③b>0;④x<2时,kx+b<x+a中,正确的个数是(  )
A.1B.2C.3D.4

分析 根据一次函数的图象与系数的关系对①②③进行判断;观察函数图象,当x>3时,一次函数y1=kx+b的图象都在移次函数y2=x+a的图象的下方,则可对④进行判断.

解答 解:∵直线=kx+b过第一、二、四象限,
∴k<0,b>0,所以①③正确;
∵直线y2=x+a的图象与y轴的交点在x轴下方,
∴a<0,所以②错误;
当x>3时,kx+b<x+a,所以④错误.
故选B.

点评 本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网