题目内容
9.二元一次方程3x+2y=15在自然数范围内的解的个数是( )| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
分析 根据二元一次方程3x+2y=15,可知在自然数范围内的解有哪几组,从而可以解答本题.
解答 解:二元一次方程3x+2y=15在自然数范围内的解是:$\left\{\begin{array}{l}{x=1}\\{y=6}\end{array}\right.,\left\{\begin{array}{l}{x=3}\\{y=3}\end{array}\right.,\left\{\begin{array}{l}{x=5}\\{y=0}\end{array}\right.$,
即二元一次方程3x+2y=15在自然数范围内的解的个数是3个.
故选C.
点评 本题考查二元一次方程的解,解题的关键是明确什么是自然数,可以根据题意找到二元一次方程3x+2y=15在自然数范围内的解有哪几组.
练习册系列答案
相关题目
19.某同学用描点法y=ax2+bx+c的图象时,列出了表:
由于粗心,他算错了其中一个y值,则这个错误的y值是-5.
| x | … | -2 | -1 | 0 | 1 | 2 | … |
| y | … | -11 | -2 | 1 | -2 | -5 | … |
20.
在一次数学实践探究活动中,大家遇到了这样的问题:
如图,在一个圆柱体形状的包装盒的底部A处有一只壁虎,在顶部B处有一只小昆虫,壁虎沿着什么路线爬行,才能以最短的路线接近小昆虫?
楠楠同学设计的方案是壁虎沿着A-C-B爬行;
浩浩同学设计的方案是将包装盒展开,在侧面展开图上连接AB,然后壁虎在包装盒的表面上沿着AB爬行.
在这两位同学的设计中,哪位同学的设计是最短路线呢?他们的理论依据是什么?( )
如图,在一个圆柱体形状的包装盒的底部A处有一只壁虎,在顶部B处有一只小昆虫,壁虎沿着什么路线爬行,才能以最短的路线接近小昆虫?
楠楠同学设计的方案是壁虎沿着A-C-B爬行;
浩浩同学设计的方案是将包装盒展开,在侧面展开图上连接AB,然后壁虎在包装盒的表面上沿着AB爬行.
在这两位同学的设计中,哪位同学的设计是最短路线呢?他们的理论依据是什么?( )
| A. | 楠楠同学正确,他的理论依据是“直线段最短” | |
| B. | 浩浩同学正确,他的理论依据是“两点确定一条直线” | |
| C. | 楠楠同学正确,他的理论依据是“垂线段最短” | |
| D. | 浩浩同学正确,他的理论依据是“两点之间,线段最短” |