题目内容
下列说法中:
①一组对角相等;②两条对角线互相垂直;③两条对角线互相平分;④一组邻角互补;⑤两组对边都相等;⑥两组对边分别平行.
这些说法中能判定四边形是平行四边形的有( )个.
①一组对角相等;②两条对角线互相垂直;③两条对角线互相平分;④一组邻角互补;⑤两组对边都相等;⑥两组对边分别平行.
这些说法中能判定四边形是平行四边形的有( )个.
| A、5 | B、4 | C、3 | D、2 |
考点:平行四边形的判定
专题:
分析:利用平行四边形的判定方法对每个选项逐一判断后即可确定正确的选项.
解答:解:①一组对角相等,不能判定平行四边形;
②两条对角线互相垂直不能判定平行四边形;
③两条对角线互相平分的四边形是平行四边形;
④一组邻角互补不能判定平行四边形;
⑤两组对边都相等的四边形是平行四边形;
⑥两组对边分别平行的四边形是平行四边形,
故选C.
②两条对角线互相垂直不能判定平行四边形;
③两条对角线互相平分的四边形是平行四边形;
④一组邻角互补不能判定平行四边形;
⑤两组对边都相等的四边形是平行四边形;
⑥两组对边分别平行的四边形是平行四边形,
故选C.
点评:本题考查了平行四边形的判定,牢记平行四边形的判定定理是解答本题的关键.
练习册系列答案
相关题目
| A、68° | B、66° |
| C、62° | D、56° |
3-π的相反数是( )
| A、-3-π | ||
B、
| ||
| C、3+π | ||
| D、π-3 |
在平面直角坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C为第一象限内一点,且AC=2,设tan∠BOC=m,则m的取值范围是( )
| A、m≥0 | ||||
B、m≥
| ||||
C、m≤
| ||||
D、0≤m≤
|
(-2xy)3的计算结果( )
| A、-2x3y3 |
| B、-8x3y3 |
| C、8x4y4 |
| D、8xy4 |