题目内容

如图,AB为⊙O的直径,C是上半圆上的一点,弦CD⊥AB,∠OCD的平分线交⊙O于P,则当弦CD(不是直径)的位置变化时,点P( )

A.到CD的距离不变 B.位置不变

C.等分 D.随C点的移动而移动

B

【解析】

试题分析:连接OP,由CP平分∠OCD,得到∠1=∠2,而∠1=∠3,所以有OP∥CD,则OP⊥AB,即可得到OP平分半圆APB.

【解析】
连接OP,如图,

∵CP平分∠OCD,

∴∠1=∠2,

∵OC=OP,

∴∠1=∠3,

∴∠2=∠3,

∴OP∥CD,

又∵弦CD⊥AB,

∴OP⊥AB,

∴OP平分半圆APB,即点P是半圆的中点.

故选B.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网