题目内容

20.如图,⊙O的直径CD垂直于弦AB,垂足为E,F为DC延长线上一点,且∠CBF=∠CDB.
(1)求证:FB为⊙O的切线;
(2)若AB=8,CE=2,求sin∠BDC.

分析 (1)连接OB,根据圆周角定理证得∠CBD=90°,然后根据等边对等角以及等量代换,证得∠OBF=90°即可证得;
(2)首先利用垂径定理求得BE的长,根据勾股定理求得圆的半径和BC的长,即可得到结果.

解答 (1)证明:连接OB.
∵CD是直径,
∴∠CBD=90°,
又∵OB=OD,
∴∠OBD=∠D,
又∠CBF=∠D,
∴∠CBF=∠OBD,
∴∠CBF+∠OBC=∠OBD+∠OBC,
∴∠OBF=∠CBD=90°,即OB⊥BF,
∴FB是圆的切线;

(2)解:∵CD是圆的直径,CD⊥AB,
∴BE=$\frac{1}{2}$AB=4,
设圆的半径是R,
在直角△OEB中,根据勾股定理得:R2=(R-2)2+42
解得:R=5,
在Rt△BEC中,BC=$\sqrt{B{E}^{2}+E{C}^{2}}$=$\sqrt{{4}^{2}+{2}^{2}}$=2$\sqrt{5}$,
在Rt△DBC中,sin∠BDC=$\frac{BC}{CD}$=$\frac{3\sqrt{5}}{10}$=$\frac{\sqrt{5}}{5}$.

点评 本题考查了切线的判定,圆周角定理,勾股定理,三角函数,熟练掌握切线的判定定理是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网