题目内容
考点:全等三角形的判定与性质
专题:证明题
分析:过D作DE⊥AB于E,由AD=BD,利用三线合一得到DE为角平分线,E为AB中点,得到AB=2AE,由已知AB=2AC,得到AE=AC,由AD为角平分线得到一对角相等,再由AD=AD,利用SAS得到三角形ACD与三角形AED全等,利用全等三角形对应角相等得到∠ADC=∠ADE,等量代换即可得证.
解答:
解:过D作DE⊥AB于E,
∵AD=BD,
∴AE=BE=
AB,∠ADE=∠BDE,
又∵AB=2AC,
∴AE=AC,
∵AD平分∠BAC,
∴∠CAD=∠EAD,
在△ADC和△ADE中,
,
∴△ADC≌△ADE(SAS),
∴∠ADC=∠ADE=∠BDE,
∴∠ADB=∠ADE+∠BDE=2∠ADC.
∵AD=BD,
∴AE=BE=
| 1 |
| 2 |
又∵AB=2AC,
∴AE=AC,
∵AD平分∠BAC,
∴∠CAD=∠EAD,
在△ADC和△ADE中,
|
∴△ADC≌△ADE(SAS),
∴∠ADC=∠ADE=∠BDE,
∴∠ADB=∠ADE+∠BDE=2∠ADC.
点评:此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.
练习册系列答案
相关题目