题目内容

9.如图,过△ABC的顶点A分别作∠ACB及其外角的平分线的垂线,垂直分布为E、F,连接EF交AB于点M,交AC于点N,求证:
(1)四边形AECF是矩形;
(2)MN=$\frac{1}{2}$BC.

分析 (1)由角平分线的定义和邻补角定义得出∠ECF=90°,由AE⊥CE,AF⊥CF,得出∠AEC=∠AFC=90°,即可得出四边形AECF是矩形;
(2)由矩形的性质得出EN=FN,AN=CN=$\frac{1}{2}$AC,由直角三角形斜边上的中线性质得出CN=$\frac{1}{2}$EF=EN,由等腰三角形的性质得出∠NEC=∠ACE=∠BCE,证出EN∥BC,得出△AMN∽△ABC,由相似三角形的对应边成比例即可得出结论.

解答 证明:(1)∵CE平分∠ACB,CF平分∠ACD,
∴∠ACE=∠BCE=$\frac{1}{2}$∠ACB,∠ACF=$\frac{1}{2}$∠ACD,
∵∠ACB+∠ACD=180°,
∴∠ACE+∠ACF=90°,
即∠ECF=90°,
又∵AE⊥CE,AF⊥CF,
∴∠AEC=∠AFC=90°,
∴四边形AECF是矩形;
(2)∵四边形AECF是矩形,
∴EN=FN,AN=CN=$\frac{1}{2}$AC,
∴CN=$\frac{1}{2}$EF=EN,
∴∠NEC=∠ACE=∠BCE,
∴EN∥BC,
∴△AMN∽△ABC,
∴$\frac{MN}{BC}$=$\frac{AN}{AC}$=$\frac{1}{2}$,
∴MN=$\frac{1}{2}$BC.

点评 本题考查了矩形的判定与性质、直角三角形斜边上的中线性质、等腰三角形的性质、平行线的判定、相似三角形的判定与性质;本题综合性强,有一定难度,证明三角形相似是解决问题(2)的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网