题目内容

12.如图,在△ABC中,AC=BC,点D在边AC上,AB=BD,BE=ED,且∠CBE=∠ABD,DE与CB交于点F.求证:
(1)BD2=AD•BE;
(2)CD•BF=BC•DF.

分析 (1)由∠CBE=∠ABD,得到∠ABC=∠DBE等量代换得到∠A=∠DBE,根据等腰三角形的性质得到∠A=∠ADB,∠DBE=∠BDE,等量代换得到∠A=∠DBE=∠BDE,推出△ABD∽△DEB,根据相似三角形的性质即可得到结论;
(2)通过△ABC≌△DBE,根据全等三角形的性质得到∠C=∠E,BE=BC,由于∠CFD=∠EFB,证得△CFD∽△EFB,根据相似三角形的性质得到结论.

解答 证明:(1)∵∠CBE=∠ABD,
∴∠ABC=∠DBE,
∵∠A=∠ABC,
∴∠A=∠DBE,
∵AB=BD,
∴∠A=∠ADB,
∵BE=DE,
∴∠DBE=∠BDE,
∴∠A=∠DBE=∠BDE,
∴△ABD∽△DEB,
∴$\frac{AD}{BD}=\frac{BD}{BE}$,
即BD2=AD•BE;

(2)在△ABC与△DBE中,
$\left\{\begin{array}{l}{∠A=∠BDE}\\{AB=DB}\\{∠ABC=∠DBE}\end{array}\right.$,
∴△ABC≌△DBE,
∴∠C=∠E,BE=BC,
∵∠CFD=∠EFB,
∴△CFD∽△EFB,
∴$\frac{BF}{DF}=\frac{BE}{CD}$,
∴$\frac{BF}{DF}=\frac{BC}{CD}$,
即:CD•BF=BC•DF.

点评 本题考查了相似三角形的判定和性质,等腰三角形的性质,全等三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网