题目内容

15.如图,矩形纸片ABCD中,AB=4,BC=8,将纸片折叠,使点C与点A重合,折痕为EF,点D的对应点为G,连接DG,则图中阴影部分面积是(  )
A.5B.3C.$\frac{36}{5}$D.$\frac{18}{5}$

分析 由于AF=CF,则在Rt△ABF中由勾股定理求得AF的值,证得△ABF≌△AGE,有AE=AF,即ED=AD-AE,再由直角三角形的面积公式求得Rt△AGE中边AE上的高的值,即可计算阴影部分的面积.

解答 解:由题意知,AF=FC,AB=CD=AG=4,BC=AD=8
在Rt△ABF中,由勾股定理知AB2+BF2=AF2,即42+(8-AF)2=AF2
解得AF=5
∵∠BAF+∠FAE=∠FAE+∠EAG=90°
∴∠BAF=∠EAG
∵∠B=∠AGE=90°,AB=AG
∴△BAF≌△GAE,
∴AE=AF=5,ED=GE=3
∵S△GAE=$\frac{1}{2}$AG•GE=$\frac{1}{2}$AE•AE边上的高
∴AE边上的高=$\frac{12}{5}$
∴S△GED=$\frac{1}{2}$ED•AE边上的高=$\frac{1}{2}$×3×$\frac{12}{5}$=$\frac{18}{5}$.
故选D.

点评 本题利用了矩形的性质和翻折的性质、勾股定理、全等三角形的判定和性质求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网