题目内容

18.先化简,再求代数式的值:($\frac{a-2}{{a}^{2}-1}-\frac{1}{a+1}$)$÷\frac{1}{a+1}$,其中a=$\sqrt{2}×\frac{\sqrt{6}}{2}+$($\sqrt{3}+1$)2

分析 先根据分式混合运算的法则把原式进行化简,再求出a的值代入进行计算即可.

解答 解:原式=[$\frac{a-2}{(a+1)(a-1)}$-$\frac{a-1}{(a+1)(a-1)}$]•(a+1)
=$\frac{a-2-a+1}{(a+1)(a-1)}$•(a+1)
=$\frac{-1}{(a+1)(a-1)}$•(a+1)
=-$\frac{1}{a-1}$,
∵a=$\sqrt{2}$×$\frac{\sqrt{6}}{2}$+3+1+2$\sqrt{3}$=3$\sqrt{3}$+4,
∴原式=-$\frac{1}{3\sqrt{3}+4-1}$=-$\frac{1}{3\sqrt{3}+3}$=-$\frac{\sqrt{3}-1}{6}$.

点评 本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网