题目内容

7.如图为两正方形ABCD、BEFG和矩形DGHI的位置图,其中G、F两点分别在BC、EH上.若AB=5,BG=3,则△GFH的面积为何?(  )
A.10B.11C.$\frac{15}{2}$D.$\frac{45}{4}$

分析 由四边形ABCD,BEFG是正方形,得到BC=CD=AB=5,GF=BG=3,∠C=∠BGF=∠GFE=∠CGF=∠GFH=90°,根据四边形DGHI是矩形,得到∠DGH=90°,于是得到∠DGC=∠FGH,推出△DGC∽△HGF,得到比例式,求得FH的长度,代入三角形的面积公式即可求出结果.

解答 解:∵四边形ABCD,BEFG是正方形,
∴BC=CD=AB=5,GF=BG=3,∠C=∠BGF=∠GFE=∠CGF=∠GFH=90°,
∵四边形DGHI是矩形,
∴∠DGH=90°,
∴∠DGC+∠CGH=∠FGH+∠HGC=90°,
∴∠DGC=∠FGH,
∴△DGC∽△HGF,
∴$\frac{DC}{FH}$=$\frac{CG}{GF}$,
∴FH=$\frac{CD•GF}{CG}$=$\frac{5×3}{2}$=$\frac{15}{2}$,
∴S△FHG=$\frac{1}{2}$GF•FH=$\frac{45}{4}$,
故选D.

点评 本题考查了正方形的性质,矩形的性质,相似三角形的判定和性质,三角形的面积,掌握定理是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网