题目内容
如图所示,长方形ABCD是“阳光小区”内一块空地,已知AB=2a,BC=3b,且E为AB边的中点,CF=BC,现打算在阴影部分种植一片草坪,求这片草坪的面积。
如图,海上有一灯塔P,在它周围6海里内有暗礁.一艘海轮以18海里/时的速度由西向东方向航行,行至A点处测得灯塔P在它的北偏东60°的方向上,继续向东行驶20分钟后,到达B处又测得灯塔P在它的北偏东45°方向上,如果海轮不改变方向继续前进有没有触礁的危险?
如图,在平面直角坐标系中,直线l1过点B(0,-1),且平行于x轴,直线l2过点C(0,-2),交直线l1于点D,,点A与点B关于x轴对称,点P为抛物线上一动点,PQ⊥l1于点Q.
(1)求直线l2的函数关系式;
(2)连接PA,AQ,OD,是否存在点P,使△PAQ与△OCD相似,若存在,求出点P坐标;若不存在,请说明理由;
(3)当点P到直线l1与直线l2的距离之和最短时,求出点P坐标及最短距离.
已知点P(1,﹣3),则点P关于原点对称的点的坐标是__.
抛物线y=﹣3(x﹣1)2+2的对称轴是( )
A. x=1 B. x=﹣1 C. x=2 D. x=﹣2
计算:
①(﹣2x)(4x2﹣2x+1) ②(6a3﹣4a2+2a)÷2a
③a4 +(a2)4 -(a2)2 ④
⑤(2a+b)2 ⑥ (3x+7y)(3x-7y)
为了美化城市,经统一规划,将一正方形草坪的南北方向增加3m,东西方向缩短3m,则改造后的长方形草坪面积与原来正方形草坪面积相比( )
A. 增加6m2 B. 减少6m2 C. 增加9m2 D. 减少9m2
以3和为两根的一元二次方程是 ( );
A. B. C. D.
如图1,点O是正方形ABCD两对角线的交点. 分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.
(1)求证:DE⊥AG;
(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转角(0°< <360°)得到正方形,如图2.
①在旋转过程中,当∠是直角时,求的度数;(注明:当直角边为斜边一半时,这条直角边所对的锐角为30度)
②若正方形ABCD的边长为1,在旋转过程中,求长的最大值和此时的度数,直接写出结果不必说明理由.
图1 图2