题目内容

15.已知:如图,在菱形ABCD中,E是AB上一点,线段DE与菱形对角线AC交于点F,点O是AC的中点,EO的延长线交边DC于点G
(1)求证:∠AED=∠FBC;
(2)求证:四边形DEBG是平行四边形.

分析 (1)首先证明△CBF≌△CDF,从而得到∠FBC=∠FDC,然后由平行线的性质可知∠FDC=∠AED,从而可证得∠AED=∠FBC;
(2)连接BD,由菱形的性质可知;OB=OD,然后再证明OG=OE,从而可证得四边形DEBG是平行四边形.

解答 证明:(1)∵四边形ABCD是菱形,
∴∠DCF=∠BCF,DC=BC.
在△DCF和△BCF中,
$\left\{\begin{array}{l}{DC=BC}\\{∠DCF=∠BCF}\\{FC=FC}\end{array}\right.$,
∴△DCF≌△BCF,
∴∠FBC=∠FDC.
∵DC∥AB,
∴∠FDC=∠AED.
∴∠AED=∠FBC.
(2)如图,连接BD.

∵四边形ABCD是菱形,O是AC的中点,
∴OD=OB.
∵DC∥AB,
∴∠GCO=∠EAO.
在△GCO和△EAO中,
$\left\{\begin{array}{l}{∠GOC=∠EAO}\\{OC=OA}\\{∠GCO=∠EAO}\end{array}\right.$,
∴△GCO≌△EAO,
∴OE=OG.
∴四边形DEBG是平行四边形.

点评 本题主要考查的是菱形的性质、平行四边形的判定、全等三角形的判定和性质,证得OG=OE是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网