题目内容

13.解方程组:
(1)$\left\{\begin{array}{l}{x+y=9}\\{3(x+y)+2x=33}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{2x-y=3}\\{3x+y=1}\end{array}\right.$;
(3)$\left\{\begin{array}{l}{x+y=5}\\{2x+y=8}\end{array}\right.$.

分析 (1)方程组整理后,利用加减消元法求出解即可;
(2)方程组利用加减消元法求出解即可;
(3)方程组利用加减消元法求出解即可.

解答 解:(1)方程组整理得:$\left\{\begin{array}{l}{x+y=9①}\\{5x+3y=33②}\end{array}\right.$,
①×5-②得:2y=12,即y=6,
把y=6代入①得:x=3,
则方程组的解为$\left\{\begin{array}{l}{x=3}\\{y=6}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{2x-y=3①}\\{3x+y=1②}\end{array}\right.$,
①+②得:5x=4,即x=$\frac{4}{5}$,
把x=$\frac{4}{5}$代入①得:y=-$\frac{7}{5}$,
则方程组的解为$\left\{\begin{array}{l}{x=\frac{4}{5}}\\{y=-\frac{7}{5}}\end{array}\right.$;
(3)$\left\{\begin{array}{l}{x+y=5①}\\{2x+y=8②}\end{array}\right.$,
②-①得:x=3,
把x=3代入①得:y=2,
则方程组的解为$\left\{\begin{array}{l}{x=3}\\{y=2}\end{array}\right.$.

点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网