题目内容

11.已知$\left\{\begin{array}{l}{x=0}\\{y=-\frac{1}{2}}\end{array}\right.$是方程组$\left\{\begin{array}{l}{x-b=y}\\{5x+2a=2y}\end{array}\right.$的解,则代数式a+b的值为0.

分析 首先把$\left\{\begin{array}{l}{x=0}\\{y=-\frac{1}{2}}\end{array}\right.$代入关于x、y的方程组$\left\{\begin{array}{l}{x-b=y}\\{5x+2a=2y}\end{array}\right.$可得关于a、b的方程组$\left\{\begin{array}{l}{0-b=-\frac{1}{2}}\\{0+2a=-1}\end{array}\right.$,解方程组可得a、b的值,进而可得代数式a+b的值.

解答 解:把$\left\{\begin{array}{l}{x=0}\\{y=-\frac{1}{2}}\end{array}\right.$代入关于x、y的方程组$\left\{\begin{array}{l}{x-b=y}\\{5x+2a=2y}\end{array}\right.$可得:$\left\{\begin{array}{l}{0-b=-\frac{1}{2}}\\{0+2a=-1}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a=-\frac{1}{2}}\\{b=\frac{1}{2}}\end{array}\right.$,
把$\left\{\begin{array}{l}{a=-\frac{1}{2}}\\{b=\frac{1}{2}}\end{array}\right.$代入a+b=-$\frac{1}{2}$+$\frac{1}{2}$=0.
故答案为:0.

点评 此题主要考查了二元一次方程组的解,当遇到有关二元一次方程组的解的问题时,要回到定义中去,通常采用代入法,即将解代入原方程组,这种方法主要用在求方程中的字母系数.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网