题目内容

1.解下列方程组
(1)$\left\{\begin{array}{l}{x=3y}\\{2x+y+7=0}\end{array}\right.$
(2)$\left\{\begin{array}{l}{x-2y=-8}\\{2x+3y=19}\end{array}\right.$.

分析 (1)方程组利用代入消元法求出解即可;
(2)方程组利用加减消元法求出解即可.

解答 解:(1)$\left\{\begin{array}{l}{x=3y①}\\{2x+y+7=0②}\end{array}\right.$,
把①代入②得:6y+y+7=0,即y=-1,
把y=-1代入①得:x=-3,
则方程组的解为$\left\{\begin{array}{l}{x=-3}\\{y=-1}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{x-2y=-8①}\\{2x+3y=19②}\end{array}\right.$,
②-①×2得:7y=35,即y=5,
把y=5代入①得:x=2,
则方程组的解为$\left\{\begin{array}{l}{x=2}\\{y=5}\end{array}\right.$.

点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网