题目内容

19.如图,已知等边△ABC以边BC为直径的半圆与边AB、AC分别交于点D、点E,过点E作EF⊥AB,垂足为点F.
(1)请判断EF与⊙O的位置关系,并证明你的结论;
(2)过点F作FH⊥BC,垂足为点H,若等边△ABC的边长为8,求FH的长.(结果保留根号)

分析 (1)首先得出△OCE是等边三角形,进而利用平行线的判定与性质得出EF⊥EO,即可得出答案;
(2)直接利用三角形中位线的性质得出AE的长,再利用直角三角形的性质得出答案.

解答 解:(1)EF是⊙O的切线,
理由:连接EO,
∵△ABC是等边三角形,
∴∠B=∠C=∠A=60°,
∵EO=CO,
∴△OCE是等边三角形,
∴∠EOC=∠B=60°,
∴EO∥AB,
∵EF⊥AB,
∴EF⊥EO,
∴EF是⊙O的切线;

(2)∵EO∥AB,
∴EO是△ACB的中位线,
∵AC=8,
∴AE=CE=4,
∵∠A=60°,EF⊥AB,
∴∠AEF=30°,
∴AF=2,
∴BF=6,
∵FH⊥BC,∠B=60°.
∴∠BFH=30°,
∴BH=3,
∴FH2=BF2-BH2
∴FH=3$\sqrt{3}$.

点评 此题主要考查了直线和圆的位置以及三角形中位线定理等知识,正确得出△OCE是等边三角形是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网