ÌâÄ¿ÄÚÈÝ
ÔĶÁ²ÄÁÏ£¬»Ø´ðÎÊÌ⣺
½â·½³Ì£¨x2-1£©2-5£¨x2-1£©+4=0£¬
¿ÉÉèx2-1=y£¬¼´£¨x2-1£©2=y2£¬
Ô·½³Ì¿É»¯Îªy2-5y+4=0£¬
ËùÒÔy=
=
£¬
¼´y1=1£¬y2=4£®
µ±y=1£¬¼´x2-1=1ʱ£¬x2=2£¬x=¡À
£¬ËùÒÔx1=
£¬x2=-
£»
µ±y=4£¬¼´x2-1=4ʱ£¬x2=5£¬x=¡À
£¬ËùÒÔx3=
£¬x4=-
£»
ÇëÄãÒÀ¾Ý´Ë½â·¨½â·½³Ì£¨x2-2x£©2-2£¨x2-2x£©-3=0£®
½â·½³Ì£¨x2-1£©2-5£¨x2-1£©+4=0£¬
¿ÉÉèx2-1=y£¬¼´£¨x2-1£©2=y2£¬
Ô·½³Ì¿É»¯Îªy2-5y+4=0£¬
ËùÒÔy=
5¡À
| ||
| 2¡Á1 |
| 5¡À3 |
| 2 |
¼´y1=1£¬y2=4£®
µ±y=1£¬¼´x2-1=1ʱ£¬x2=2£¬x=¡À
| 2 |
| 2 |
| 2 |
µ±y=4£¬¼´x2-1=4ʱ£¬x2=5£¬x=¡À
| 5 |
| 5 |
| 5 |
ÇëÄãÒÀ¾Ý´Ë½â·¨½â·½³Ì£¨x2-2x£©2-2£¨x2-2x£©-3=0£®
¿¼µã£º»»Ôª·¨½âÒ»Ôª¶þ´Î·½³Ì
רÌ⣺ÔĶÁÐÍ
·ÖÎö£º»»Ôª·¨¼´ÊÇÕûÌå˼ÏëµÄ¿¼²é£¬½âÌâµÄ¹Ø¼üÊÇÕÒµ½Õâ¸öÕûÌ壬´ËÌâµÄÕûÌåÊÇx2-2xÉèx2-2x=y£¬»»ÔªºóÕûÀí¼´¿ÉÇóµÃ£®
½â´ð£º½â£º£¨x2-2x£©2-2£¨x2-2x£©-3=0£®
Éèx2-2x=y£¬¼´£¨x2-2x£©2=y2£¬
Ô·½³Ì¿É»¯Îªy2-2y-3=0£¬
ËùÒÔy=
=
£¬
¼´y1=3£¬y2=-1£®
µ±y=-1£¬¼´x2-2x=-1ʱ£¬x2-2x+1=0£¬£¨x-1£©2=0£¬ËùÒÔx1=x2=1£»
µ±y=3£¬¼´x2-2x=3ʱ£¬x2-2x-3=0£¬£¨x-3£©£¨x+1£©=0£¬ËùÒÔx3=3£¬x4=-1£»
Éèx2-2x=y£¬¼´£¨x2-2x£©2=y2£¬
Ô·½³Ì¿É»¯Îªy2-2y-3=0£¬
ËùÒÔy=
2¡À
| ||
| 1¡Á2 |
| 2¡À4 |
| 2 |
¼´y1=3£¬y2=-1£®
µ±y=-1£¬¼´x2-2x=-1ʱ£¬x2-2x+1=0£¬£¨x-1£©2=0£¬ËùÒÔx1=x2=1£»
µ±y=3£¬¼´x2-2x=3ʱ£¬x2-2x-3=0£¬£¨x-3£©£¨x+1£©=0£¬ËùÒÔx3=3£¬x4=-1£»
µãÆÀ£º±¾Ì⿼²éÁË»»Ôª·¨½âÒ»Ôª¶þ´Î·½³Ì£¬ÕÒ³ö´ËÌâµÄÕûÌåÊÇx2-2x²¢Éèx2-2x=yÊDZ¾ÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
´ÓÒ»¸öµÈÑüÈý½ÇÐÎֽƬµÄµ×½Ç¶¥µã³ö·¢£¬Äܽ«Æä¼ô³ÉÁ½¸öµÈÑüÈý½ÇÐÎֽƬ£¬ÔòÔµÈÑüÈý½ÇÐÎֽƬµÄµ×½ÇµÈÓÚ£¨¡¡¡¡£©
| A¡¢72¡ã | ||
B¡¢£¨
| ||
| C¡¢144¡ã | ||
D¡¢72¡ã»ò£¨
|
ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A¡¢Èç¹ûÁ½ÌõÖ±Ïß±»µÚÈýÌõÖ±ÏßËù½Ø£¬ÄÇôÄÚ´í½Ç±ØÏàµÈ |
| B¡¢Èç¹ûÁ½ÌõÖ±Ïß±»µÚÈýÌõÖ±ÏßËù½Ø£¬ÄÇôͬλ½ÇµÄ½Çƽ·ÖÏß±ØÆ½ÐÐ |
| C¡¢Èç¹ûͬÅÔÄڽǻ¥²¹£¬ÄÇôËüÃÇµÄ½ÇÆ½·ÖÏ߱ػ¥Ïà´¹Ö± |
| D¡¢Èç¹ûÁ½½ÇµÄÁ½±ß·Ö±ðƽÐУ¬ÄÇôÕâÁ½¸ö½Ç±ØÏàµÈ |
ÒÑÖª|a+1|+
=0£¬Ôòa+b=£¨¡¡¡¡£©
| 7-b |
| A¡¢8 | B¡¢0 | C¡¢-8 | D¡¢6 |