题目内容

4.如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在E处,EQ与BC相交于F.若AD=8cm,AB=6cm,AE=4cm.则△EBF的周长是8cm.

分析 设AH=a,则DH=AD-AH=8-a,通过勾股定理即可求出a值,再根据同角的余角互补可得出∠BFE=∠AEH,从而得出△EBF∽△HAE,根据相似三角形的周长比等于对应比即可求出结论.

解答 解:设AH=a,则DH=AD-AH=8-a,
在Rt△AEH中,∠EAH=90°,AE=4,AH=a,EH=DH=8-a,
∴EH2=AE2+AH2,即(8-a)2=42+a2
解得:a=3.
∵∠BFE+∠BEF=90°,∠BEF+∠AEH=90°,
∴∠BFE=∠AEH.
又∵∠EAH=∠FBE=90°,
∴△EBF∽△HAE,
∴$\frac{{C}_{△EBF}}{{C}_{△HAE}}$=$\frac{BE}{AH}$=$\frac{AB-AE}{AH}$=$\frac{2}{3}$.
∵C△HAE=AE+EH+AH=AE+AD=12,
∴C△EBF=$\frac{2}{3}$C△HAE=8.
故答案为:8.

点评 本题考查了翻折变换、矩形的性质、勾股定理以及相似三角形的判定及性质,解题的关键是找出△EBF∽△HAE.本题属于中档题,难度不大,解决该题型题目时,通过勾股定理求出三角形的边长,再根据相似三角形的性质找出周长间的比例是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网