题目内容

17.如图,根据图中信息解答下列问题:
(1)关于x的不等式ax+b>0的解集是x<4.
(2)关于x的不等式mx+n<1的解集是x<0.
(3)当x为何值时,y1≤y2
(4)当x为何值时,0<y2<y1

分析 (1)利用直线y=ax+b与x轴的交点为(4,0),然后利用函数图象可得到不等式kx+b>0的解集.
(2)利用直线y=mx+n与x轴的交点为(0,1),然后利用函数图象可得到不等式mx+n<1的解集.
(3)结合两条直线的交点坐标为(2,18)来求得y1≤y2解集.
(4)结合函数图象直接写出答案.

解答 解:(1)∵直线y2=ax+b与x轴的交点是(4,0),
∴当x<4时,y2>0,即不等式ax+b>0的解集是x<4;
故答案是:x<4;

(2)∵直线y1=mx+n与y轴的交点是(0,1),
∴当x<0时,y1<1,即不等式mx+n<1的解集是x<0;.
故答案是:x<0;

(3)由一次函数的图象知,两条直线的交点坐标是(2,18),当函数y1的图象在y2的下面时,有x≤2,
所以当x≤2时,y1≤y2

(4)如图所示,当2<x<4时,0<y2<y1

点评 本题考查了一次函数与一元一次不等式,解答该类题目时,需要学生具备一定的读图能力,体现了数形结合的思想方法,准确的确定出x的值,是解答本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网