ÌâÄ¿ÄÚÈÝ
6£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬AB=AC£¬AD¡ÍBCÓÚµãD£¬BC=10cm£¬AD=8cm£¬µãP´ÓµãB³ö·¢£¬ÔÚÏß¶ÎBCÉÏÒÔÿÃë3cmµÄËÙ¶ÈÏòµãCÔÈËÙÔ˶¯£¬Óë´Ëͬʱ£¬´¹Ö±ÓÚADµÄÖ±Ïßm´Óµ×±ßBC³ö·¢£¬ÒÔÿÃë2cmµÄËÙ¶ÈÑØDA·½ÏòÔÈËÙÆ½ÒÆ£¬·Ö±ð½»AB£¬AC£¬ADÓÚE¡¢F¡¢H£¬µ±µãPµ½´ïµãCʱ£¬µãPÓëÖ±ÏßmͬʱֹͣÔ˶¯£¬ÉèÔ˶¯Ê±¼äΪtÃ루t£¾0£©£®£¨1£©µ±t=2ʱ£¬Á¬½ÓDE¡¢DF£¬ÇóÖ¤£ºËıßÐÎAEDFΪÁâÐΣ»
£¨2£©ÔÚÕû¸öÔ˶¯¹ý³ÌÖУ¬ËùÐγɵġ÷PEFµÄÃæ»ý´æÔÚ×î´óÖµ£¬µ±¡÷PEFµÄÃæ»ý×î´óʱ£¬ÇóÏß¶ÎBPµÄ³¤£®
·ÖÎö £¨1£©Èç´ðͼ1Ëùʾ£¬ÀûÓÃÁâÐε͍ÒåÖ¤Ã÷£»
£¨2£©Èç´ðͼ2Ëùʾ£¬Ê×ÏÈÇó³ö¡÷PEFµÄÃæ»ýµÄ±í´ïʽ£¬È»ºóÀûÓöþ´Îº¯ÊýµÄÐÔÖÊÇó½â£®
½â´ð £¨
1£©Ö¤Ã÷£ºµ±t=2ʱ£¬DH=AH=4£¬ÔòHΪADµÄÖе㣬Èç´ðͼ1Ëùʾ£®
ÓÖ¡ßEF¡ÍAD£¬
¡àEFΪADµÄ´¹Ö±Æ½·ÖÏߣ¬
¡àAE=DE£¬AF=DF£®
¡ßAB=AC£¬AD¡ÍBCÓÚµãD£¬
¡àAD¡ÍBC£¬¡ÏB=¡ÏC£®
¡àEF¡ÎBC£¬
¡à¡ÏAEF=¡ÏB£¬¡ÏAFE=¡ÏC£¬
¡à¡ÏAEF=¡ÏAFE£¬
¡àAE=AF£¬
¡àAE=AF=DE=DF£¬¼´ËıßÐÎAEDFΪÁâÐΣ®
£¨2£©½â£ºÈç´ðͼ2Ëùʾ£¬ÓÉ£¨1£©ÖªEF¡ÎBC£¬
¡à¡÷AEF¡×¡÷ABC£®
¡à$\frac{EF}{BC}=\frac{AH}{AD}$£¬¼´$\frac{EF}{10}=\frac{8-2t}{8}$£®
½âµÃ£ºEF=10-$\frac{5}{2}$t£®
S¡÷PEF=$\frac{1}{2}$EF•DH=$\frac{1}{2}$£¨10-$\frac{5}{2}$t£©•2t=-$\frac{5}{2}$t2+10t=-$\frac{5}{2}$£¨t-2£©2+10£¨0£¼t£¼$\frac{10}{3}$£©£¬
¡àµ±t=2Ãëʱ£¬S¡÷PEF´æÔÚ×î´óÖµ£¬×î´óֵΪ10cm2£¬´ËʱBP=3t=6cm£®
µãÆÀ ±¾ÌâÊÇÔ˶¯ÐÍ×ÛºÏÌâ£¬Éæ¼°¶¯µãÓ붯ÏßÁ½ÖÖÔ˶¯ÀàÐÍ£®µÚ£¨1£©ÎÊ¿¼²éÁËÁâÐε͍Ò壻µÚ£¨2£©ÎÊ¿¼²éÁËÏàËÆÈý½ÇÐΡ¢Í¼ÐÎÃæ»ý¼°¶þ´Îº¯ÊýµÄ¼«Öµ£¬ÀûÓÃÏàËÆÈý½ÇÐεÄÐÔÖʱíʾ³öEFµÄ³¤ÊǽâÌâµÄ¹Ø¼ü£®
¢ÙAE=CF£» ¢Ú¡÷EPFÒ»¶¨ÊǵÈÑüÖ±½ÇÈý½ÇÐΣ» ¢ÛSËıßÐÎAEPF=$\frac{1}{2}$S¡÷ABC£»
¢Üµ±¡ÏEPFÔÚ¡÷ABCÄÚÈÆ¶¥µãPÐýתʱʼÖÕÓÐEF=AP£®£¨µãE²»ÓëA¡¢BÖØºÏ£©£¬
ÉÏÊö½áÂÛÖÐʼÖÕÕýÈ·µÄÓУ¨¡¡¡¡£©
| A£® | ¢Ù¢Ü | B£® | ¢Ù¢Ú | C£® | ¢Ù¢Ú¢Û | D£® | ¢Ù¢Ú¢Û¢Ü |
| A£® | $\sqrt{20}=2\sqrt{10}$ | B£® | $\sqrt{9}=¡À3$ | C£® | $\sqrt{4}-\sqrt{2}=\sqrt{2}$ | D£® | $\sqrt{£¨-5£©^{2}}$=5 |
| A£® | £¨a+b£©2=a2+b2 | B£® | a2-b2=£¨a-b£©2 | C£® | £¨2x£©3=6x3 | D£® | x5¡Âx3=x2 |