题目内容
13.| A. | 30° | B. | 45° | C. | 60° | D. | 75° |
分析 连接BD,由菱形的性质及∠A=60°,得到三角形ABD为等边三角形,P为AB的中点,利用三线合一得到DP为角平分线,得到∠ADP=30°,∠ADC=120°,∠C=60°,进而求出∠PDC=90°,由折叠的性质得到∠CDE=∠PDE=45°,利用三角形的内角和定理即可求出所求角的度数.
解答 解:连接BD,
如图所示:
∵四边形ABCD为菱形,
∴AB=AD,
∵∠A=60°,
∴△ABD为等边三角形,∠ADC=120°,∠C=60°,
∵P为AB的中点,
∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,
∴∠PDC=90°,
∴由折叠的性质得到∠CDE=∠PDE=45°,
在△DEC中,∠DEC=180°-(∠CDE+∠C)=75°.
故选:D.
点评 此题考查了翻折变换(折叠问题),菱形的性质,等边三角形的性质,以及内角和定理,熟练掌握折叠的性质是解本题的关键.
练习册系列答案
相关题目
8.某日的最低气温为-2℃,最高气温比最低气温高为6℃,则这一天的最高气温是( )
| A. | 8℃ | B. | 6℃ | C. | 4℃ | D. | 2℃ |
18.
如图,在△ABC中,∠A=90°,AB=AC=6,点D是BC中点,点E、F分别在AB、AC上,且BE=AF,则四边形AEDF的面积为( )
| A. | 6 | B. | 7 | C. | 6$\sqrt{2}$ | D. | 9 |