题目内容

如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是( )

A.(2,10)

B.(-2,0)

C.(2,10)或(-2,0)

D.(10,2)或(-2,0)

C. 【解析】 试题解析:∵点D(5,3)在边AB上, ∴BC=5,BD=5-3=2, ①若顺时针旋转,则点D′在x轴上,OD′=2, 所以,D′(-2,0), ②若逆时针旋转,则点D′到x轴的距离为10,到y轴的距离为2, 所以,D′(2,10), 综上所述,点D′的坐标为(2,10)或(-2,0). 故选C.
练习册系列答案
相关题目

如图,在等边△ABC中,边长为6,D是BC边上的动点,∠EDF=60°.

(1)求证:△BDE∽△CFD;

(2)当BD=1,CF=3时,求BE的长.

【答案】(1)证明见解析;(2)

【解析】试题分析:

(1)由题意可得,∠B=∠C=60°,∠BDE+∠CDF=120°,∠BDE+∠BED=120°,由此可得:∠CDF=∠BED,从而可得:△BDE∽△CFD;

(2)由△BDE∽△CFD可得: ,由已知易得:CD=BC-BD=5-1=4,由此可得: ,解得BE=.

试题解析:

(1)∵△ABC是等边三角形,

∴∠B=∠C=60°,

∴∠BDE+∠BED=120°.

∵∠EDF=60°,

∴∠BDE+∠CDF=120°,

∴∠CDF=∠BED,

∴△BDE∽△CFD;

(2)∵等边△ABC的边长为5,BD=1,

∴CD=BC-BD=4.

∵△BDE∽△CFD,

,即

∴BE=.

点睛:本题解题的关键是:由∠EDF=∠B=60°,得到∠BDE+∠BED=120°和∠BDE+∠CDF=120°,从而得到∠BED=∠CDF.

【题型】解答题
【结束】
25

如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.

(1)求证:△ABM ∽△EFA;

(2)若AB=12,BM=5,求DE的长.

(1)证明见解析;(2)4.9. 【解析】试题分析:(1)由正方形的性质得出AB=AD,∠B=90°,AD∥BC,得出∠AMB=∠EAF,再由∠B=∠AFE,即可得出结论; (2)由勾股定理求出AM,得出AF,由△ABM∽△EFA得出比例式,求出AE,即可得出DE的长. 试题解析:(1)∵四边形ABCD是正方形, ∴AB=AD,∠B=90°,AD∥BC, ∴∠AMB=...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网