题目内容
已知点P(a+1,﹣ +1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是( )
A. B.
C. D.
当前,“低头族”已成为热门话题之一,小颖为了解路边行人步行边低头看手机的情况,她应采用的收集数据的方式是( )
A. 对学校的同学发放问卷进行调查
B. 对在路边行走的学生随机发放问卷进行调查
C. 对在路边行走的行人随机发放问卷进行调查
D. 对在图书馆里看书的人发放问卷进行调查
抛物线变为的形式,则mn=___________。
如图,在四边形ABCD中,∠ABC=30°,将△DCB绕点C顺时针旋转60°后,点D的对应点恰好与点A重合,得到△ACE,若AB=3,BC=4,则BD= (提示:可连接BE)
如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是( )
A.(2,10)
B.(-2,0)
C.(2,10)或(-2,0)
D.(10,2)或(-2,0)
在平面直角坐标系中.
(1)已知点P(2a-6,a+4)在y轴上,求点P的坐标;
(2)已知两点A(-3,m-1),B(n+1,4)若AB∥x 轴,点B在第一象限,求m的值,并确定n的取值范围;
(3)在(1)(2)的条件下,如果线段 AB 的长度是6,试判断以P、A、B为顶点的三角形的形状,并说明理由.
若一次函数y=kx+b 的图象如图所示,则y<0时自变量 x 的取值范围是______________;
(12分)如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的矩形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C顺时针旋转至CE′F′D,旋转角为.
(1)当点D′恰好落在EF边上时,则旋转角α的值为________度;
(2)如图2,G为BC中点,且0°<α<90°,求证:GD′=E′D;
(3)小长方形CEFD绕点C顺时针旋转一周的过程中,是否存在旋转角α,使△DCD′与△CBD′全等?若能,直接写出旋转角α的值;若不能,说明理由.
解方程:(1) ; (2).
【答案】(1)x1 =1 ,x2=; (2) x1 =-1,x2= .
【解析】试题分析:
根据两方程的特点,使用“因式分解法”解两方程即可.
试题解析:
(1)原方程可化为: ,
方程左边分解因式得: ,
或,
解得: , .
(2)原方程可化为: ,即,
∴,
∴或,
解得: .
【题型】解答题【结束】20
已知x1,x2是关于x的一元二次方程x2-2(m+1)x+m2+5=0的两实根.
(1)若(x1-1)(x2-1)=28,求m的值;
(2)已知等腰△ABC的一边长为7,若x1,x2恰好是△ABC另外两边的边长,求这个三角形的周长.