题目内容

8.如图,四边形ABCD为正方形,边长为4,点F在AB边上,E为射线AD上一点,正方形ABCD沿直线EF折叠,点A落在G处,已知点G恰好在以AB为直径的圆上,则CG的最小值等于(  )
A.0B.2$\sqrt{5}$C.4-2$\sqrt{5}$D.2$\sqrt{5}$-2

分析 先根据题意画出图形,由翻折的性质可知AF=FG,AG⊥OE,∠OGE=90°,由垂径定理可知点O为半圆的圆心,从而得到OB=OG=2,依据勾股定理可求得OC的长,最后依据GC=OC-OG求解即可.

解答 解:如图所示:

由翻折的性质可知:AF=FG,AG⊥OE,∠OAE=∠OGE=90°.
∵AF=FG,AG⊥OE,
∴点O是圆半圆的圆心.
∴OG=OA=OB=2.
在△OBC中,由勾股定理可知:OC=$\sqrt{O{B}^{2}+B{C}^{2}}$=$\sqrt{{2}^{2}+{4}^{2}}$=2$\sqrt{5}$.
∵当点O、G、C在一条直线上时,GC有最小值,
∴CG的最小值=OC-OG=2$\sqrt{5}$-2.
故选:D.

点评 本题主要考查的是翻折变换、勾股定理的应用、垂径定理,明确当点O、G、C在一条直线上时,GC有最小值是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网