题目内容
19.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律.若把第一个数记为a1,第二数记为a2,…,第n个数记为an.计算a2-a1,a3-a2,a4-a3,…,由此推算a10-a9=10,a2012=2025078.分析 先计算a2-a1=3-1=2;a3-a2=6-3=3;a4-a3=10-6=4,则a10-a9=10,a2=1+2,a3=1+2+3,a4=1+3+4,即第n个三角形数等于1到n的所有整数的和,然后计算n=2012的a的值.
解答 解:∵a2-a1=3-1=2;
a3-a2=6-3=3;
a4-a3=10-6=4,
∴a10-a9=10
∵a2=1+2,
a3=1+2+3,
a4=1+2+3+4,
…
∴a2012=1+2+3+4+…+2012=$\frac{2012×(2012+1)}{2}$=2025078.
故答案为:10,2025078.
点评 本题考查了规律型:数字的变化类,通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况是解答此题的关键.
练习册系列答案
相关题目
13.
某蔬菜经销商去蔬菜生产基地批发某种蔬菜,已知这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元;若超过60千克时,批发的这种蔬菜全部打八折,但批发总金额不得少于300元.
(1)根据题意,填写如表:
(2)经调查,该蔬菜经销商销售该种蔬菜的日销售量y(千克)与零售价x(元/千克)是一次函数关系,其图象如图,求出y与x之间的函数关系式;
(3)若该蔬菜经销商每日销售此种蔬菜不低于75千克,且当日零售价不变,那么零售价定为多少时,该经销商销售此种蔬菜的当日利润最大?最大利润为多少元?
(1)根据题意,填写如表:
| 蔬菜的批发量(千克) | … | 25 | 60 | 75 | 90 | … |
| 所付的金额(元) | … | 125 | 300 | 300 | 360 | … |
(3)若该蔬菜经销商每日销售此种蔬菜不低于75千克,且当日零售价不变,那么零售价定为多少时,该经销商销售此种蔬菜的当日利润最大?最大利润为多少元?
4.设P是高为h的正三角形内的一点,P到三边的距离分别为x,y,z(x≤y≤z).若以x,y,z为边可以组成三角形,则z应满足的条件为( )
| A. | $\frac{1}{4}$h≤z$<\frac{1}{3}$h | B. | $\frac{1}{3}$h≤z$<\frac{1}{2}$h | C. | $\frac{1}{2}$h≤z$<\frac{3}{4}$h | D. | $\frac{3}{4}h≤z<h$ |