ÌâÄ¿ÄÚÈÝ

4£®ÒÑÖªÅ×ÎïÏßy=ax2+bx+3£¬¾­¹ýµãM£¨-4£¬0£©£¬ÇÒ¶Ô³ÆÖáΪx=-$\frac{5}{2}$£¬½»yÖáÓÚB£®
£¨1£©ÇóÅ×ÎïÏß¶ÔÓ¦µÄ½âÎöʽ£»
£¨2£©ÈôxÖáÉÏÓÐÒ»µãA£¨4£¬0£©£¬½«¡÷ABOÑØxÖáÏò×óÆ½ÒÆµ½¡÷DCE£¨Èçͼ£©£¬µ±ËıßÐÎABCDΪÁâÐÎʱ£¬ÊÔÅжÏC£¬DÊÇ·ñÔÚÅ×ÎïÏßÉÏ£»
£¨3£©ÔÚ£¨2£©ÖУ¬ÈôµãPÊÇÅ×ÎïÏßÉÏÒ»¸ö¶¯µã£¨µãP²»ÓëC£¬DÖØºÏ£©£¬¾­¹ýµãP×÷PQ¡ÎyÖá½»Ö±ÏßCDÓÚQ£¬ÉèµãPµÄºá×ø±êΪt£¬PQµÄ³¤¶ÈΪd£¬ÇódÓëtÖ®¼äµÄº¯Êý½âÎöʽ£¬²¢Ö±½Óд³öµ±tΪºÎֵʱ£¬ÒÔP£¬Q£¬C£¬EΪ¶¥µãµÄËıßÐÎÊÇÆ½ÐÐËıßÐΣ®

·ÖÎö £¨1£©¸ù¾ÝÒÑÖªÇóµÃÅ×ÎïÏßÓëxÖáµÄÁíÒ»¸ö½»µã£¬È»ºó¸ù¾Ý´ý¶¨ÏµÊý·¨ÇóµÃ¼´¿É£»
£¨2£©ÒÑÖªA¡¢BµãµÄ×ø±ê£¬Óɹ´¹É¶¨ÀíÄÜÇó³öABµÄ³¤£¬ÈôËıßÐÎABCDÊÇÁâÐΣ¬ÄÇôAD=BC=AB£¬¿É¾Ý´ËÇó³öC¡¢DµãµÄ×ø±ê£¬ÔÙ´úÈëÅ×ÎïÏߵĽâÎöʽÖнøÐÐÑéÖ¤¼´¿É£®
£¨3£©ÔÚÇódÓëtÖ®¼äµÄº¯Êý½âÎöʽʱ£¬Òª·ÖÁ½ÖÖÇé¿ö£º¢ÙÅ×ÎïÏßÔÚÖ±ÏßCDÉÏ·½¡¢¢ÚÅ×ÎïÏßÔÚÖ±ÏßCDÏ·½£»Ïȸù¾ÝÖ±ÏßCDÓëÅ×ÎïÏߵĽâÎöʽ£¬±íʾ³öP¡¢QµÄ×ø±ê£¬ËüÃÇ×Ý×ø±êµÄ²î¼´ÎªdµÄ³¤£¬µ±ÒÔP¡¢Q¡¢C¡¢EΪ¶¥µãµÄËıßÐÎÊÇÆ½ÐÐËıßÐÎʱ£¬ÓÉÓÚCE¡ÎPQ¡ÎyÖᣬÄÇôCE±ØÓëPQÏàµÈ£¬½«CE³¤´úÈëd¡¢tµÄº¯Êý¹ØÏµÊ½ÖУ¬¼´¿ÉÇó³ö·ûºÏÌõ¼þµÄtµÄÖµ£®

½â´ð ½â£º£¨1£©¡ßÅ×ÎïÏßy=ax2+bx+3£¬¾­¹ýµãM£¨-4£¬0£©£¬ÇÒ¶Ô³ÆÖáΪx=-$\frac{5}{2}$£¬
¡àM¹ØÓÚx=-$\frac{5}{2}$µÄ¶Ô³ÆµãΪ£¨-1£¬0£©£¬
¡à$\left\{\begin{array}{l}{16a-4b+3=0}\\{a-b+3=0}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{a=\frac{3}{4}}\\{b=\frac{15}{4}}\end{array}\right.$£¬
¡àÅ×ÎïÏߵĽâÎöʽ£ºy=$\frac{3}{4}$x2+$\frac{15}{4}$x+3£®

£¨2£©¡ßÅ×ÎïÏßy=$\frac{3}{4}$x2+$\frac{15}{4}$x+3½»yÖáÓÚB£®
¡àB£¨0£¬3£©£¬
¡ßA£¨4£¬0£©£¬
¡àOA=4£¬OB=3£¬AB=$\sqrt{O{A}^{2}+O{B}^{2}}$=5£»
ÈôËıßÐÎABCDÊÇÁâÐΣ¬ÔòBC=AD=AB=5£¬
¡àC£¨-5£¬3£©¡¢D£¨-1£¬0£©£®
½«C£¨-5£¬3£©´úÈëy=$\frac{3}{4}$x2+$\frac{15}{4}$x+3ÖУ¬µÃ£º$\frac{3}{4}$¡Á£¨-5£©2+$\frac{15}{4}$¡Á£¨-5£©+3=3£¬ËùÒÔµãCÔÚÅ×ÎïÏßÉÏ£»
ͬÀí¿ÉÖ¤£ºµãDÒ²ÔÚÅ×ÎïÏßÉÏ£®

£¨3£©ÉèÖ±ÏßCDµÄ½âÎöʽΪ£ºy=kx+b£¬ÒÀÌâÒ⣬ÓУº
$\left\{\begin{array}{l}{-5k+b=3}\\{-k+b=0}\end{array}\right.$£¬½âµÃ $\left\{\begin{array}{l}{k=-\frac{3}{4}}\\{b=-\frac{3}{4}}\end{array}\right.$£¬
¡àÖ±ÏßCD£ºy=-$\frac{3}{4}$x-$\frac{3}{4}$£®
ÓÉÓÚPQ¡ÎyÖᣬÉè P£¨t£¬$\frac{3}{4}$t2+$\frac{15}{4}$t+3£©£¬Ôò Q£¨t£¬-$\frac{3}{4}$t-$\frac{3}{4}$£©£»
¢Ùt£¼-5»òt£¾-1ʱ£¬d=PQ=£¨$\frac{3}{4}$t2+$\frac{15}{4}$t+3£©-£¨-$\frac{3}{4}$t-$\frac{3}{4}$£©=$\frac{3}{4}$t2+$\frac{9}{2}$t+$\frac{15}{4}$£»
¢Ú-5£¼t£¼-1ʱ£¬d=PQ=£¨-$\frac{3}{4}$t-$\frac{3}{4}$£©-£¨$\frac{3}{4}$t2+$\frac{15}{4}$t+3£©=-$\frac{3}{4}$t2-$\frac{9}{2}$t-$\frac{15}{4}$£»
ÈôÒÔM¡¢N¡¢C¡¢EΪ¶¥µãµÄËıßÐÎÊÇÆ½ÐÐËıßÐΣ¬ÓÉÓÚPQ¡ÎCE£¬ÔòPQ=CE=3£¬ÔòÓУº
$\frac{3}{4}$t2+$\frac{9}{2}$t+$\frac{15}{4}$=3£¬½âµÃ£ºt1=-3+2$\sqrt{2}$£¬t2=-3-2$\sqrt{2}$£»
-$\frac{3}{4}$t2-$\frac{9}{2}$t-$\frac{15}{4}$=3£¬½âµÃ£ºt=-3£»
×ÛÉÏ£¬µ±t=-3+2$\sqrt{2}$»òt=-3-2$\sqrt{2}$»ò-3ʱ£¬ÒÔP£¬Q£¬C£¬EΪ¶¥µãµÄËıßÐÎÊÇÆ½ÐÐËıßÐΣ®

µãÆÀ ´ËÌâÊǶþ´Îº¯Êý×ÛºÏÌâÉæ¼°µÄÄÚÈÝÓУºº¯Êý½âÎöʽµÄÈ·¶¨ÒÔ¼°ÁâÐΡ¢Æ½ÐÐËıßÐεÄÐÔÖÊ£»×îºóÒ»ÌâÈÝÒ׳ö´í£¬Ò»¶¨Òª×¢Ò⺯Êý½âÎöʽ¶ÔÓ¦µÄ×Ô±äÁ¿È¡Öµ·¶Î§£¬ÒÔÃâ³ö´í£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø