题目内容

2.如图,矩形ABCD的对角线AC、BD相交于点0,过点O作OE⊥AC交AB于E.若BC=8,△AOE的面积为20,则sin∠BOE的值为$\frac{3}{5}$.

分析 由题意可知,OE为对角线AC的中垂线,则CE=AE,S△AEC=2S△AOE=40,由S△AEC求出线段AE的长度,进而在Rt△BCE中,由勾股定理求出线段BE的长度;然后证明∠BOE=∠BCE,从而可求得结果.

解答 解:如图,

连接EC.
由题意可得,OE为对角线AC的垂直平分线,
∴CE=AE,S△AOE=S△COE=5,
∴S△AEC=2S△AOE=20.
∴$\frac{1}{2}$AE•BC=20,又BC=8,
∴AE=5,
∴EC=5.
在Rt△BCE中,由勾股定理得:BE=$\sqrt{C{E}^{2}-B{C}^{2}}$=3.
∵∠AEO+∠EAO=90°,∠AEO=∠BOE+∠ABO,
∴∠BOE+∠ABO+∠EAO=90°,又∠ABO=90°-∠OBC=90°-(∠BCE+∠ECO)
∴∠BOE+[90°-(∠BCE+∠ECO)]+∠EAO=90°,
化简得:∠BOE-∠BCE-∠ECO+∠EAO=0,
∵OE为AC中垂线,
∴∠EAO=∠ECO.
代入上式得:∠BOE=∠BCE.
∴sin∠BOE=sin∠BCE=$\frac{BE}{BC}$=$\frac{3}{5}$.
故答案为:$\frac{3}{5}$.

点评 此题考查矩形性质、线段垂直平分线的性质、勾股定理、三角函数的定义等知识点;解题要抓住两个关键:(1)求出线段AE的长度;(2)证明∠BOE=∠BCE.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网